< 上一个 | 内容 | 下一个 >

8 章 参考文献


[1] 保罗·萨伽德著,朱菁,陈梦雅译. 心智:认知科学导论. 上海辞书出版社.2012.

[2] 刘晓力等. 认知科学对当代哲学的挑战. 科学出版社.2022.

[3] Q. Zhao, G. Zhou, L. Zhang, A. Cichocki and S. -I. Amari. Bayesian Robust Tensor Factorization for Incomplete Multiway Data. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 736- 748.

[4] Pan, Z., Niu, L., Zhang, J., & Zhang, L. Disentangled Information Bottleneck. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 9285-9293.

[5] Zang L J, Cao C, Cao Y N, et al. A survey of commonsense knowledge acquisition. Journal of Computer Science and Technology, 2013, 28(4): 689-719.

[6] Davis E, Marcus G. Commonsense reasoning and commonsense knowledge in artificial intelligence. Communications of the ACM, 2015, 58(9): 92-103.

[7] 蔡天琪,蔡恒进. 附着与隧通—心智的工作模式.湖南大学学报

(社会科学版). 2021.

[8] Zeng Y, Zhao Y, Zhang T, et al. A brain-inspired model of theory of mind. Frontiers in Neurorobotics, 2020, 14: 60.

[9] Zhao Z, Lu E, Zhao F, et al. A brain-inspired theory of mind spiking neural network for reducing safety risks of other agents. Frontiers in Neuroscience, 2022, 16: 753900.

[10] Zhao Z, Zhao F, Zhao Y, et al. Brain-Inspired Theory of Mind Spiking Neural Network Elevates Multi-Agent Cooperation and Competition.


Patterns, 2023, 4(8): 100775.

[11] Hui Feng, Yi Zeng, and Enmeng Lu. Brain-Inspired Affective Empathy Computational Model and Its Application on Altruistic Rescue Task, Frontiers in Computational Neuroscience, 2022.

[12] Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572(7767): 106-111.

[13] 史忠植.心智计算.清华大学出版社.2015.

[14] Shi Z. Intelligence science is the road to human-level artificial intelligence. Keynotes Speaker, IJCAI-13, Workshop on Intelligence Science, 2013.

[15] Turing, Alan Mathison. On computable numbers, with an application to the Entscheidungsproblem. J. of Math, 1936, 58: 345-363.

[16] Newell A, Simon H A. Computer science as empirical inquiry symbols and search. Communications of the Association for Computing Machinery, 1976, 19.

[17] Newell A. Physical Symbol Systems. Cognitive science, 1980, 4(2): 135–83.

[18] Anderson J R. Language, memory, and thought. Psychology Press, 1976.

[19] John R. Anderson , Christian Lebiere. The atomic components of thought. Psychology Press, 2014.

[20] Laird J E, Newell A, Rosenbloom P S. SOAR: An architecture for general intelligence. Artificial Intelligence, 1987, 33(1): 1-64.

[21] Shi Z. Foundations of Intelligence Science. International Journal of Intelligence Science, 2011, 1: 8-16.

[22] Shi Z, Wang X, Yue J. Cognitive Cycle in Mind Model CAM. International Journal of Intelligence Science, 2011, 1: 25-34.


[23] Zeng Y, Zhao D, Zhao F, et al. BrainCog: A spiking neural network based, brain-inspired cognitive intelligence engine for brain-inspired AI and brain simulation. Patterns, 2023, 4(8):100789.

[24] Wimmer H, Perner J. Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children's understanding of deception. Cognition, 1983, 13(1): 103-28.

[25] Huang Q, Liu X. Do infants have an understanding of false belief?. Advances in Psychological Science, 2017, 25(3).

[26] Heyes C M. Theory of mind in nonhuman primates. Behav Brain Sci, 1998, 21(1): 101-14.

[27] Heyes C. Animal mindreading: what’s the problem?. Psychon Bull Rev, 2015, 22: 313-27.

[28] Lurz R, Krachun C. Experience-projection methods in theory-of-mind research: Their limits and strengths. Current Directions in Psychological Science, 2019, 28(5): 456-62.

[29] Krupenye C, Kano F, Hirata S, et al. Great apes anticipate that other individuals will act according to false beliefs. Science, 2016, 354(6308): 110-114.

[30] Baron-cohen S, Leslie A M, Frith U. Does the autistic child have a “theory of mind”?. Cognition, 1985, 21(1): 37-46.

[31] Senju A, Southgate V, Snape C, et al. Do 18-month-olds really attribute mental states to others? A critical test. Psychol Sci, 2011, 22(7): 878-880.

[32] Southgate V, Senju A, Csibra G. Action anticipation through attribution of false belief by 2-year-olds. Psychol Sci, 2007, 18(7): 587-92.

[33] Tanenhaus M K, Spivey-knowlton J, Eberhard K M, et al. Integration of visual and linguistic information in spoken language comprehension.


Science, 1995, 268(5217): 1632-1634.

[34] Knudsen B, Liszkowski U. Eighteenand 24monthold infants correct others in anticipation of action mistakes. Dev Sci, 2012, 15(1): 113- 122.

[35] Gopnik A, Astington J W. Children's understanding of representational change and its relation to the understanding of false belief and the appearance-reality distinction. Child Dev, 1988: 26-37.

[36] Schurz M, Radua J, Aichhorn M, et al. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev, 2014, 42: 9-34.

[37] Molenberghs P, Johnson H, Henry J D, et al. Understanding the minds of others: A neuroimaging meta-analysis. Neurosci Biobehav Rev, 2016, 65: 276-291.

[38] Schurz M, Perner J. An evaluation of neurocognitive models of theory of mind. Front Psychol, 2015, 6: 1610.

[39] Goodman N D, Baker C L, Bonawitz E B, et al. Intuitive theories of mind: A rational approach to false belief. Proceedings of the twenty-eighth annual conference of the cognitive science society, 2006.

[40] Jara-ettinger J. Theory of mind as inverse reinforcement learning. Current Opinion in Behavioral Sciences, 2019, 29: 105-110.

[41] Baker C, Saxe R, Tenenbaum J. Bayesian theory of mind: Modeling joint belief-desire attribution. Proceedings of the annual meeting of the cognitive science society. 2011

[42] De Weerd H, Verbrugge R, Verheij B. Theory of mind in the Mod game: An agent-based model of strategic reasoning. European Conference on Social Intelligence, 2014, 9.

[43] De Weerd H, Verbrugge R, Verheij B. Higher-order social cognition


in rock-paper-scissors: A simulation study (extended abstract). 2012: 1195- 1196.

[44] De Weerd H, Verbrugge R, Verheij B. How much does it help to know what she knows you know? An agent-based simulation study. Artif Intell, 2013, 199: 67-92.

[45] Lee J J, Sha F, Breazeal C. A Bayesian theory of mind approach to nonverbal communication. Proceedings of the 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2019.

[46] Patacchiola M, Cangelosi A. A developmental cognitive architecture for trust and theory of mind in humanoid robots. IEEE Transactions on Cybernetics, 2020, 52(3):1947-1959.

[47] Rabinowitz N C, Perbet F, Song H F, et al. Machine Theory of Mind. arXiv preprint arXiv:180207740, 2018.

[48] Akula A R, Wang K, Liu C, et al. CX-ToM: Counterfactual explanations with theory-of-mind for enhancing human trust in image recognition models. iScience, 2022, 25(1): 103581.

[49] Yang T, Meng Z, Hao J, et al. Towards Efficient Detection and Optimal Response against Sophisticated Opponents. arXiv %U http://arxiv.org/abs/1809.04240, 2019.

[50] Roth M, Marsella S, Barsalou L. Cutting Corners in Theory of Mind. Proceedings of the AAAI Fall Symposium 2022 on Thinking Fast and Slow and Other Cognitive Theories in AI, 2022.

[51] Berthiaume V G, Shultz T R, Onishi K H. A constructivist connectionist model of transitions on false-belief tasks. Cognition, 2013, 126(3): 441-458.

[52] Milliez G, Warnier M, Clodic A, et al. A framework for endowing an interactive robot with reasoning capabilities about perspective-taking and


belief management. Proceedings of the Ro-Man: the IEEE International Symposium on Robot and Human Interactive Communication, 2014.

[53] Winfield A F. Experiments in artificial theory of mind: From safety to story-telling. Frontiers in Robotics and AI, 2018, 5:75.

[54] Bremner P, Dennis L A, Fisher M, et al. On Proactive, Transparent, and Verifiable Ethical Reasoning for Robots. Proceedings of the IEEE, 2019, 107(3): 541-561.

[55] Choudhury R, Swamy G, Hadfield-menell D, et al. On the utility of model learning in HRI. Proceedings of the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2019.

[56] De Waal F B M, Preston S D. Mammalian empathy: behavioural manifestations and neural basis. Nature Reviews Neuroscience, 2017, 18(8): 498-509.

[57] Paiva A, Leite I, Boukricha H, et al. Empathy in virtual agents and robots: A survey. ACM Transactions on Interactive Intelligent Systems (TiiS), 2017, 7(3): 1-40.

[58] Malinowska J K. What Does It Mean to Empathise with a Robot?. Minds and Machines, 2021: 1-16.

[59] Barbara Gonsior, Stefan Sosnowski, Christoph Mayer, Jurgen Blume, Bernd Radig, Dirk Wollherr, and K. Kuhnlenz. Improving aspects of empathy and subjective performance for HRI through mirroring facial expressions. In RO-MAN, 2011.

[60] Iolanda Leite, Ginevra Castellano, Andre Pereira, Carlos Martinho, and Ana Paiva. Empathic robots for long-terms interaction: Evaluating social presence, engagement and perceived support in children. International Journal of Social Robotics, 2014:1–13.

[61] Watanabe A, Ogino M, Asada M. Mapping facial expression to


internal states based on intuitive parenting. Journal of Robotics and Mechatronics, 2007, 19(3): 315.

[62] Woo J, Kubota N. Emotional empathy model for robot partners using recurrent spiking neural network model with Hebbian-LMS learning. Malaysian Journal of Computer Science, 2017, 30(4): 258-285.

[63] Bartal I B A, Decety J, Mason P. Empathy and pro-social behavior in rats. Science, 2011, 334(6061): 1427-1430.

[64] Charles C, The D, Appleton A D. The Expression of the Emotions in Man and Animals. American Journal of Psychiatry, 1956, 123(1):146.

[65] Rizzolatti G, Sinigaglia C. The mirror mechanism: a basic principle of brain function. Nature Reviews Neuroscience, 2016, 17(12): 757-765.

[66] Oztop E, Kawato M, Arbib M A. Mirror neurons: functions, mechanisms and models. Neuroscience letters, 2013, 540: 43-55.

[67] Khalil, R., Tindle, R., Boraud, T., Moustafa, A. A., and Karim, A. A.Social decision making in autism: On the impact of mirror neurons, motor control, and imitative behaviors. CNS Neuroscience &Therapeutics. 2018. 24:669–676.

[68] Christian, K. and Valeria, G. Social neuroscience: Mirror neurons recorded in humans. Current Biology, 2010, 20:353–354.

[69] Lamm, C., Decety, J., and Singer, T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 2011, 54: 2492–2502.

[70] Corradi-Dell’Acqua, C., Tusche, A., Vuilleumier, P., and Singer, T. Cross-modal representations of first-hand and vicarious pain, disgust and fairness in insular and cingulate cortex. Nature Communications 2016, 7.

[71] Davis, M.The role of the amygdala in fear and anxiety. Annual Review of Neuroscience,1992, 15:353–375.


[72] Mukamel, R., Ekstrom, A., Kaplan, J., Iacoboni, M., and I, F. Single- neuron responses in humans during execution and observation of actions. Curr Biol, 2010, 20: 750–756.

[73] Jabbi, C., M.and Keysers. Inferior frontal gyrus activity triggers anterior insula response to emotional facial expressions. Emotion, 2008, 8:775–780.

[74] Rizzolatti, G. and Luppino, G. The cortical motor system. Neuron, 2001, 31: 889–901.

[75] Gazzola, V. and Keysers, C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fmri data. Cerebral cortex. 2008, 19: 1239–1255.

[76] Erhan, O., Mitsuo, K., and Michael, A. A. Mirror neurons: Functions, mechanisms and models. Neuroscience Letters, 2013, 540: 43–55.

[77] Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., and Zilles, K. Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage, 2001, 13: 684–701.

[78] Zipser, K., Lamme, V. A. F., and Schiller, P. H. Contextual modulation in primary visual cortex. Journal of Neuroscience, 1996, 16: 7376–7389.

[79] Keysers C, Gazzola V. Hebbian learning and predictive mirror neurons for actions, sensations and emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369(1644): 20130175.

[80] Kilner J M, Friston K J, Frith C D. Predictive coding: an account of the mirror neuron system. Cognitive processing, 2007, 8(3): 159-166.

[81] Yamada, H. Visual information for categorizing facial expression of emotions. Applied Cognitive Psychology, 1993, 7: 257–270.


[82] Darwin, C. The Expression of the Emotions in Man and Animals (University of Chicago Press). 2015.

[83] Bechara A, Damasio H,Damasio A R . Emotion, Decision Making and the Orbitofrontal Cortex. Cerebral Cortex, 2000, 10(3):295-307.

[84] Dehaene, S., Lau, H. & Kouider, S. What is consciousness, and could machines have it? Robotics, AI, and Humanity: Science, Ethics, and Policy, 2021,43-56.

[85] Gazzaniga, M. S., Bogen, J. E. & Sperry, R. W. Some functional effects of sectioning the cerebral commissures in man. Proceedings of the National Academy of Sciences, 1962, 48: 1765-1769.

[86] Gazzaniga, M. S. The split-brain: rooting consciousness in biology. Proceedings of the National Academy of Sciences, 2014, 111: 18093- 18094.

[87] Corkin, S. Permanent present tense: The unforgettable life of the amnesic patient, Journal of Undergraduate Neuroscience Education, 2014, 12(2): R3.

[88] Crick, F. & Koch, C. Towards a neurobiological theory of consciousness. Seminars in the Neurosciences. Saunders Scientific Publications, 1990, 2: 263-275.

[89] Chalmers, D. J. The conscious mind: In search of a fundamental theory. Oxford Paperbacks, 1997.

[90] Leopold, D. A. & Logothetis, N. K. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature, 1996, 379: 549-553.

[91] Logothetis, N. K. & Schall, J. D. Neuronal correlates of subjective visual perception. Science, 1989, 245: 761-763.

[92] Blake, R., Brascamp, J. & Heeger, D. J. Can binocular rivalry reveal


neural correlates of consciousness? Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369: 20130211.

[93] Dehaene, S. & Changeux, J.-P. Experimental and theoretical approaches to conscious processing. Neuron, 2011, 70: 200-227.

[94] Massimini, M. et al. Breakdown of cortical effective connectivity during sleep. Science, 2005, 309: 2228-2232.

[95] Adodra, S. & Hales, T. G. Potentiation, activation and blockade of GABAA receptors of clonal murine hypothalamic GT1-7 neurones by propofol. British journal of pharmacology, 1995, 115(6):953.

[96] Merker, B. Consciousness without a cerebral cortex: A challenge for neuroscience and medicine. Behav. Brain Sci. 2007, 30: 63-81.

[97] Seth, A. K. & Bayne, T. Theories of consciousness. Nature Reviews Neuroscience, 2022, 23: 439-452.

[98] Lau, H. & Rosenthal, D. Empirical support for higher-order theories of conscious awareness. Trends in cognitive sciences, 2011, 15: 365-373.

[99] Rosenthal, D. Consciousness and mind. Clarendon Press, 2005.

[100] Brown, R. The HOROR theory of phenomenal consciousness. Philosophical Studies, 2015, 172: 1783-1794.

[101] Cleeremans, A. Consciousness: the radical plasticity thesis. Progress in brain research, 2007, 168: 19-33.

[102] Cleeremans, A. et al. Learning to be conscious. Trends in cognitive sciences, 2020, 24: 112-123.

[103] Fleming, S. M. Awareness as inference in a higher-order state space. Neuroscience of consciousness 2020, niz020.

[104] Rosenthal, D. M. Consciousness and its function. Neuropsychologia, 2008, 46: 829-840.

[105] Charles, L., Van Opstal, F., Marti, S. & Dehaene, S. Distinct brain


mechanisms for conscious versus subliminal error detection. NeuroImage, 2013, 73: 80-94.

[106] Brown, R., Lau, H. & LeDoux, J. E. Understanding the higher-order approach to consciousness. Trends in cognitive sciences, 2019, 23: 754- 768.

[107] Baars B J. A cognitive theory of consciousness. Cambridge University Press, 1993.

[108] Tononi G. Integrated information theory. Scholarpedia, 2015, 10(1): 4164.

[109] Tononi G, Koch C. Consciousness: here, there and everywhere? Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1668): 20140167.

[110] Oizumi M, Albantakis L, Tononi G. From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS computational biology, 2014, 10(5): e1003588.

[111] Signorelli C M, Szczotka J, Prentner R. Explanatory profiles of models of consciousness-towards a systematic classification. Neuroscience of consciousness, 2021, 2021(2): niab021.

[112] Hoel E P, Albantakis L, Tononi G. Quantifying causal emergence shows that macro can beat micro. Proceedings of the National Academy of Sciences, 2013, 110(49): 19790-19795.

[113] Oizumi M, Tsuchiya N, Amari S. Unified framework for information integration based on information geometry. Proceedings of the National Academy of Sciences, 2016, 113(51): 14817-14822.

[114] Haun A, Tononi G. Why does space feel the way it does? Towards a principled account of spatial experience. Entropy, 2019, 21(12): 1160.

[115] Albantakis L, Barbosa L, Findlay G, et al. Integrated information


theory (IIT) 4.0: formulating the properties of phenomenal existence in physical terms. arXiv preprint arXiv:2212.14787, 2022.

[116] Oizumi M, Amari S, Yanagawa T, et al. Measuring integrated information from the decoding perspective. PLoS computational biology, 2016, 12(1): e1004654.

[117] Mediano P A M, Rosas F E, Bor D, et al. The strength of weak integrated information theory. Trends in Cognitive Sciences, 2022.

[118] Leung A, Cohen D, Van Swinderen B, et al. Integrated information structure collapses with anesthetic loss of conscious arousal in Drosophila melanogaster. PLOS Computational Biology, 2021, 17(2): e1008722.

[119] Albantakis L, Hintze A, Koch C, et al. Evolution of integrated causal structures in animats exposed to environments of increasing complexity. PLoS computational biology, 2014, 10(12): e1003966.

[120] Butlin P, Long R, Elmoznino E, et al. Consciousness in Artificial Intelligence: Insights from the Science of Consciousness. arXiv preprint arXiv:2308.08708, 2023.

[121] Friston K. A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184, 2019.

[122] Lamme, V. A. Towards a true neural stance on consciousness. Trends in cognitive sciences, 2006, 10, 494-501.

[123] Lamme, V. A. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends in neurosciences, 2000, 23, 571-579.

[124] Hohwy, J. & Seth, A. Predictive processing as a systematic basis for identifying the neural correlates of consciousness. Philosophy and the Mind Sciences 1, 2020.

[125] Lamme, V. A. How neuroscience will change our view on


consciousness. Cogn. Neurosci. 2010, 1: 204-220.

[126] Friston, K. The free-energy principle: a unified brain theory? Nature reviews neuroscience, 2010, 11: 127-138.

[127] Friston, K. Am I self-conscious?(Or does self-organization entail self-consciousness?). Front. Psychol. 2018, 9: 579.

[128] Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature neuroscience, 1999, 2: 79-87.

[129] Hohwy, J. The predictive mind. OUP Oxford, 2013.

[130] Boly, M. et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science, 2011, 332: 858-862.

[131] 蔡恒进. 认知坎陷作为无执的存有. 求索, 2017, 2:5.

[132] 蔡恒进,蔡天琪,张文蔚,汪恺.机器崛起前传——自我意识与人类智慧的开端.北京:清华大学出版社,2017

[133] 蔡恒进. 智能的因果链重构理论. 人民论坛·学术前沿, 2023.


中国人工智能学会心智计算专业委员会

中国人工智能学会心智计算专业委员会正式成立于 2022 年,已发展会员 500余名,吸收了来自于国内 26 个省份、80 余所高校、研究院所和企事业单位的专家学者与学生会员,是国内心智计算领域具有活力和凝聚力的学术组织。心智计算专委会以多学科交叉的方式融合来自人工智能、认知科学、脑与神经科学、演化生物学、人类学等学科的研究方法与学者的贡献,对生物智能和心智活动的机制机理进行多视角、多尺度系统性的探索,重点研究心智的计算理论体系、心智建模、生物与人工意识、学习与记忆机制、常识构建与理解、社会认知等的科学原理和关键技术,并研发受脑与心智启发的通用人工智能。心智计算专委会开展丰富的学术交流活动,为心智计算与智能科学研究人员提供合作、交流的平台,推动中国心智计算的发展。专委会在筹备期间及成立以来,已成功举办多次相关专题论坛、国际会议,并设有专委会公众号和“心智计算论坛”等系列学术平台。


专委会公众号:CAAI 心智计算

专委会 B 站:CAAI 心智计算


image


image

 

加入心智计算专委会请访问学会网站:https://www.caai.cn/