4 最佳实践
推荐的模型组合⚓︎
-
在默认的配置文件中,我们提供了以下模型组合
LLM: Chatglm2-6b Embedding Models: m3e-base TextSplitter: ChineseRecursiveTextSplitter Kb_dataset: faiss
-
我们推荐开发者根据自己的业务需求进行模型微调,如果不需要微调且配置充足,可选择以下性能较好的配置
使用该模型将需要更高的硬件要求model_config.py LLM: Qwen-14B-Chat 或 Baichuan2-13B-Chat Embedding Models: piccolo-large-zh 或 bge-large-zh-v1.5 HISTORY_LEN = 20 TEMPERATURE = 0.1
1张 RTX A6000 或者 A40 等 48GB 显存以上的显卡。推荐 1 x A100 以上。 (使用多张显卡拼接也能运行,但是速度非常慢,2张4090拼接运行大概为一秒一个字的速度) 64GB 内存用于加载模型而不被Kill 服务器级的CPU,推荐 Xeon(R) Platinum 8358P 以上
-
如果开发者知识库较大,有大量文档,大文件,我们推荐开发者使用
pg
向量数据库 -
如果开发者的知识库具有一定的关键词特征,例如:
- 问答对文件(以Q + A 为一个组合的json文件)
- Markdown文件
- 并排的pdf文件
- 具有多个表格的pdf文件
我们推荐开发者自行开发分词器,以达到更好的效果。
-
如果开发者想使用更全面的 Agent 功能,我们推荐开发者使用以下配置
LLM: Qwen-14B-Chat, AgentLM-70B 或 GPT-4 Tools 的工具控制在10个之内
微调模型加载实操⚓︎
非p-tuning类PEFT加载⚓︎
本项目基于 FastChat 加载 LLM 服务,故需以 FastChat 加载 PEFT 路径,针对chatglm,falcon,codet5p以外的模型,以及非p-tuning以外的peft方法,需对peft文件进行修改,步骤如下:
- 将config.json文件修改为adapter_config.json;
- 保证文件夹包含pytorch_model.bin文件;
- 修改文件夹名称,保证文件夹包含'peft'一词;
- 将peft文件夹移入项目目录下;
- 确保adapter_config.json文件夹中base_model_name_or_path指向基础模型;
- 将peft路径添加到model_config.py的llm_dict中,键为模型名,值为peft路径,注意使用相对路径,如"peft";
- 开启
PEFT_SHARE_BASE_WEIGHTS=true
环境变量,再执行python startup.py -a
针对p-tuning和chatglm模型,需要对fastchat进行较大幅度的修改。
p-tuning加载⚓︎
P-tuning虽然是一种peft方法,但并不能于huggingface的peft python包兼容,而fastchat在多处以字符串匹配的方式进行硬编码加载模型,因此导致fastchat和chatchat不能兼容p-tuning,经langchain-chatchat开发组多次尝试,给出如下指南进行p-tuning加载。
1. peft文件夹修改⚓︎
- 将config.json文件修改为adapter_config.json;
- 保证文件夹包含pytorch_model.bin文件;
- 修改文件夹名称,保证文件夹包含'peft'一词;
- 在adapter_config.json文件中增加如下字段:
"base_model_name_or_path": "/root/model/chatglm2-6b/"
"task_type": "CAUSAL_LM",
"peft_type": "PREFIX_TUNING",
"inference_mode": true,
"revision": "main",
"num_virtual_tokens": 16
其中,"base_model_name_or_path"为基础模型的存在位置; 5. 将文件夹移入项目文件夹中,如Langchain-Chatchat项目文件夹目录下;
2. fastchat包代码修改⚓︎
2.1 fastchat.model.model_adapter文件修改⚓︎
- 将fastchat.model.model_adapter.py文件的load_model函数修改为:
def load_model(
model_path: str,
device: str = "cuda",
num_gpus: int = 1,
max_gpu_memory: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
load_8bit: bool = False,
cpu_offloading: bool = False,
gptq_config: Optional[GptqConfig] = None,
awq_config: Optional[AWQConfig] = None,
revision: str = "main",
debug: bool = False,
load_kwargs = {}
):
"""Load a model from Hugging Face."""
# get model adapter
adapter = get_model_adapter(model_path)
kwargs = load_kwargs
# Handle device mapping
cpu_offloading = raise_warning_for_incompatible_cpu_offloading_configuration(
device, load_8bit, cpu_offloading
)
if device == "cpu":
kwargs["torch_dtype"]= torch.float32
if CPU_ISA in ["avx512_bf16", "amx"]:
try:
import intel_extension_for_pytorch as ipex
kwargs ["torch_dtype"]= torch.bfloat16
except ImportError:
warnings.warn(
"Intel Extension for PyTorch is not installed, it can be installed to accelerate cpu inference"
)
elif device == "cuda":
kwargs["torch_dtype"] = torch.float16
if num_gpus != 1:
kwargs["device_map"] = "auto"
if max_gpu_memory is None:
kwargs[
"device_map"
] = "sequential" # This is important for not the same VRAM sizes
available_gpu_memory = get_gpu_memory(num_gpus)
kwargs["max_memory"] = {
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
for i in range(num_gpus)
}
else:
kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
elif device == "mps":
kwargs["torch_dtype"] = torch.float16
# Avoid bugs in mps backend by not using in-place operations.
replace_llama_attn_with_non_inplace_operations()
elif device == "xpu":
kwargs["torch_dtype"] = torch.bfloat16
# Try to load ipex, while it looks unused, it links into torch for xpu support
try:
import intel_extension_for_pytorch as ipex
except ImportError:
warnings.warn(
"Intel Extension for PyTorch is not installed, but is required for xpu inference."
)
elif device == "npu":
kwargs["torch_dtype"]= torch.float16
# Try to load ipex, while it looks unused, it links into torch for xpu support
try:
import torch_npu
except ImportError:
warnings.warn("Ascend Extension for PyTorch is not installed.")
else:
raise ValueError(f"Invalid device: {device}")
if cpu_offloading:
# raises an error on incompatible platforms
from transformers import BitsAndBytesConfig
if "max_memory" in kwargs:
kwargs["max_memory"]["cpu"] = (
str(math.floor(psutil.virtual_memory().available / 2**20)) + "Mib"
)
kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_8bit_fp32_cpu_offload=cpu_offloading
)
kwargs["load_in_8bit"] = load_8bit
elif load_8bit:
if num_gpus != 1:
warnings.warn(
"8-bit quantization is not supported for multi-gpu inference."
)
else:
model, tokenizer = adapter.load_compress_model(
model_path=model_path,
device=device,
torch_dtype=kwargs["torch_dtype"],
revision=revision,
)
if debug:
print(model)
return model, tokenizer
elif awq_config and awq_config.wbits < 16:
assert (
awq_config.wbits == 4
), "Currently we only support 4-bit inference for AWQ."
model, tokenizer = load_awq_quantized(model_path, awq_config, device)
if num_gpus != 1:
device_map = accelerate.infer_auto_device_map(
model,
max_memory=kwargs["max_memory"],
no_split_module_classes=[
"OPTDecoderLayer",
"LlamaDecoderLayer",
"BloomBlock",
"MPTBlock",
"DecoderLayer",
],
)
model = accelerate.dispatch_model(
model, device_map=device_map, offload_buffers=True
)
else:
model.to(device)
return model, tokenizer
elif gptq_config and gptq_config.wbits < 16:
model, tokenizer = load_gptq_quantized(model_path, gptq_config)
if num_gpus != 1:
device_map = accelerate.infer_auto_device_map(
model,
max_memory=kwargs["max_memory"],
no_split_module_classes=["LlamaDecoderLayer"],
)
model = accelerate.dispatch_model(
model, device_map=device_map, offload_buffers=True
)
else:
model.to(device)
return model, tokenizer
kwargs["revision"] = revision
if dtype is not None: # Overwrite dtype if it is provided in the arguments.
kwargs["torch_dtype"] = dtype
# Load model
model, tokenizer = adapter.load_model(model_path, kwargs)
if (
device == "cpu"
and kwargs["torch_dtype"] is torch.bfloat16
and CPU_ISA is not None
):
model = ipex.optimize(model, dtype=kwargs["torch_dtype"])
if (device == "cuda" and num_gpus == 1 and not cpu_offloading) or device in (
"mps",
"xpu",
"npu",
):
model.to(device)
if device == "xpu":
model = torch.xpu.optimize(model, dtype=kwargs["torch_dtype"], inplace=True)
if debug:
print(model)
return model, tokenizer
def get_generate_stream_function(model: torch.nn.Module, model_path: str):
"""Get the generate_stream function for inference."""
from fastchat.serve.inference import generate_stream
model_type = str(type(model)).lower()
is_chatglm = "chatglm" in model_type
is_falcon = "rwforcausallm" in model_type
is_codet5p = "codet5p" in model_type
is_peft = "peft" in model_type
if is_chatglm:
return generate_stream_chatglm
elif is_falcon:
return generate_stream_falcon
elif is_codet5p:
return generate_stream_codet5p
elif peft_share_base_weights and is_peft:
# Return a curried stream function that loads the right adapter
# according to the model_name available in this context. This ensures
# the right weights are available.
@torch.inference_mode()
def generate_stream_peft(
model,
tokenizer,
params: Dict,
device: str,
context_len: int,
stream_interval: int = 2,
judge_sent_end: bool = False,
):
model.set_adapter(model_path)
if "chatglm" in str(type(model.base_model)).lower():
model.disable_adapter()
prefix_state_dict = torch.load(os.path.join(model_path, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
elif k.startswith("transformer.prompt_encoder."):
new_prefix_state_dict[k[len("transformer.prompt_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
for x in generate_stream_chatglm(
model,
tokenizer,
params,
device,
context_len,
stream_interval,
judge_sent_end,
):
yield x
elif "rwforcausallm" in str(type(model.base_model)).lower():
for x in generate_stream_falcon(
model,
tokenizer,
params,
device,
context_len,
stream_interval,
judge_sent_end,
):
yield x
elif "codet5p" in str(type(model.base_model)).lower():
for x in generate_stream_codet5p(
model,
tokenizer,
params,
device,
context_len,
stream_interval,
judge_sent_end,
):
yield x
else:
for x in generate_stream(
model,
tokenizer,
params,
device,
context_len,
stream_interval,
judge_sent_end,
):
yield x
return generate_stream_peft
else:
return generate_stream
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
"""Loads the base model then the (peft) adapter weights"""
from peft import PeftConfig, PeftModel
config = PeftConfig.from_pretrained(model_path)
base_model_path = config.base_model_name_or_path
if "peft" in base_model_path:
raise ValueError(
f"PeftModelAdapter cannot load a base model with 'peft' in the name: {config.base_model_name_or_path}"
)
# Basic proof of concept for loading peft adapters that share the base
# weights. This is pretty messy because Peft re-writes the underlying
# base model and internally stores a map of adapter layers.
# So, to make this work we:
# 1. Cache the first peft model loaded for a given base models.
# 2. Call `load_model` for any follow on Peft models.
# 3. Make sure we load the adapters by the model_path. Why? This is
# what's accessible during inference time.
# 4. In get_generate_stream_function, make sure we load the right
# adapter before doing inference. This *should* be safe when calls
# are blocked the same semaphore.
if peft_share_base_weights:
if base_model_path in peft_model_cache:
model, tokenizer = peft_model_cache[base_model_path]
# Super important: make sure we use model_path as the
# `adapter_name`.
model.load_adapter(model_path, adapter_name=model_path)
else:
base_adapter = get_model_adapter(base_model_path)
base_model, tokenizer = base_adapter.load_model(
base_model_path, from_pretrained_kwargs
)
# Super important: make sure we use model_path as the
# `adapter_name`.
from peft import get_peft_model
model = get_peft_model(base_model,config,adapter_name=model_path)
peft_model_cache[base_model_path] = (model, tokenizer)
return model, tokenizer
# In the normal case, load up the base model weights again.
base_adapter = get_model_adapter(base_model_path)
base_model, tokenizer = base_adapter.load_model(
base_model_path, from_pretrained_kwargs
)
from peft import get_peft_model
model = get_peft_model(base_model,config,adapter_name=model_path)
return model, tokenizer
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
revision = from_pretrained_kwargs.get("revision", "main")
tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True, revision=revision
)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True,**from_pretrained_kwargs)
model = AutoModel.from_pretrained(
model_path, trust_remote_code=True, config=config
)
return model, tokenizer
2.2 fastchat.serve.model_worker文件修改⚓︎
- 将fastchat.serve.model_worker文件的ModelWorker的__init__方法修改如下:
class ModelWorker(BaseModelWorker):
def __init__(
self,
controller_addr: str,
worker_addr: str,
worker_id: str,
model_path: str,
model_names: List[str],
limit_worker_concurrency: int,
no_register: bool,
device: str,
num_gpus: int,
max_gpu_memory: str,
dtype: Optional[torch.dtype] = None,
load_8bit: bool = False,
cpu_offloading: bool = False,
gptq_config: Optional[GptqConfig] = None,
awq_config: Optional[AWQConfig] = None,
stream_interval: int = 2,
conv_template: Optional[str] = None,
embed_in_truncate: bool = False,
seed: Optional[int] = None,
load_kwargs = {}, #修改点
**kwargs,
):
super().__init__(
controller_addr,
worker_addr,
worker_id,
model_path,
model_names,
limit_worker_concurrency,
conv_template=conv_template,
)
logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...")
self.model, self.tokenizer = load_model(
model_path,
device=device,
num_gpus=num_gpus,
max_gpu_memory=max_gpu_memory,
dtype=dtype,
load_8bit=load_8bit,
cpu_offloading=cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
load_kwargs=load_kwargs #修改点
)
self.device = device
if self.tokenizer.pad_token == None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.context_len = get_context_length(self.model.config)
print("**"*100)
self.generate_stream_func = get_generate_stream_function(self.model, model_path)
print(f"self.generate_stream_func{self.generate_stream_func}")
print("*"*100)
self.stream_interval = stream_interval
self.embed_in_truncate = embed_in_truncate
self.seed = seed
if not no_register:
self.init_heart_beat()
parser.add_argument("--load_kwargs",type=dict,default={})
并将如下语句:
worker = ModelWorker(
args.controller_address,
args.worker_address,
worker_id,
args.model_path,
args.model_names,
args.limit_worker_concurrency,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
dtype=str_to_torch_dtype(args.dtype),
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
stream_interval=args.stream_interval,
conv_template=args.conv_template,
embed_in_truncate=args.embed_in_truncate,
seed=args.seed,
)
修改为:
worker = ModelWorker(
args.controller_address,
args.worker_address,
worker_id,
args.model_path,
args.model_names,
args.limit_worker_concurrency,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
dtype=str_to_torch_dtype(args.dtype),
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
stream_interval=args.stream_interval,
conv_template=args.conv_template,
embed_in_truncate=args.embed_in_truncate,
seed=args.seed,
load_kwargs=args.load_kwargs
)
至此,我们完成了fastchat加载ptuning的所有修改,在调用fastchat加载p-tuning时,可以通过加入 PEFT_SHARE_BASE_WEIGHTS=true
,并以字典的形式添加--load_kwargs参数为训练ptuning时的pre_seq_len值即可,例如将2.2.2步骤中的 parser.add_argument("--load_kwargs",type=dict,default={})
修改为:
parser.add_argument("--load_kwargs",type=dict,default={"pre_seq_len":16})
3 langchain-chatchat代码修改:⚓︎
- 在configs/serve_config.py中的FSCHAT_MODEL_WORKERS字典中增加如下字段:
"load_kwargs": {"pre_seq_len": 16} #值修改为adapter_config.json中的pre_seq_len值
def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
"""
kwargs包含的字段如下:
host:
port:
model_names:[`model_name`]
controller_address:
worker_address:
对于online_api:
online_api:True
worker_class: `provider`
对于离线模型:
model_path: `model_name_or_path`,huggingface的repo-id或本地路径
device:`LLM_DEVICE`
"""
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.model_worker import worker_id, logger
import argparse
logger.setLevel(log_level)
parser = argparse.ArgumentParser()
args = parser.parse_args([])
for k, v in kwargs.items():
setattr(args, k, v)
# 在线模型API
if worker_class := kwargs.get("worker_class"):
from fastchat.serve.model_worker import app
worker = worker_class(model_names=args.model_names,
controller_addr=args.controller_address,
worker_addr=args.worker_address)
sys.modules["fastchat.serve.model_worker"].worker = worker
# 本地模型
else:
from configs.model_config import VLLM_MODEL_DICT
if kwargs["model_names"][0] in VLLM_MODEL_DICT and args.infer_turbo == "vllm":
import fastchat.serve.vllm_worker
from fastchat.serve.vllm_worker import VLLMWorker,app
from vllm import AsyncLLMEngine
from vllm.engine.arg_utils import AsyncEngineArgs,EngineArgs
args.tokenizer = args.model_path # 如果tokenizer与model_path不一致在此处添加
args.tokenizer_mode = 'auto'
args.trust_remote_code= True
args.download_dir= None
args.load_format = 'auto'
args.dtype = 'auto'
args.seed = 0
args.worker_use_ray = False
args.pipeline_parallel_size = 1
args.tensor_parallel_size = 1
args.block_size = 16
args.swap_space = 4 # GiB
args.gpu_memory_utilization = 0.90
args.max_num_batched_tokens = 2560
args.max_num_seqs = 256
args.disable_log_stats = False
args.conv_template = None
args.limit_worker_concurrency = 5
args.no_register = False
args.num_gpus = 1 # vllm worker的切分是tensor并行,这里填写显卡的数量
args.engine_use_ray = False
args.disable_log_requests = False
if args.model_path:
args.model = args.model_path
if args.num_gpus > 1:
args.tensor_parallel_size = args.num_gpus
for k, v in kwargs.items():
setattr(args, k, v)
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
worker = VLLMWorker(
controller_addr = args.controller_address,
worker_addr = args.worker_address,
worker_id = worker_id,
model_path = args.model_path,
model_names = args.model_names,
limit_worker_concurrency = args.limit_worker_concurrency,
no_register = args.no_register,
llm_engine = engine,
conv_template = args.conv_template,
)
sys.modules["fastchat.serve.vllm_worker"].engine = engine
sys.modules["fastchat.serve.vllm_worker"].worker = worker
else:
from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker
args.gpus = "0" # GPU的编号,如果有多个GPU,可以设置为"0,1,2,3"
args.max_gpu_memory = "20GiB"
args.num_gpus = 1 # model worker的切分是model并行,这里填写显卡的数量
args.load_8bit = False
args.cpu_offloading = None
args.gptq_ckpt = None
args.gptq_wbits = 16
args.gptq_groupsize = -1
args.gptq_act_order = False
args.awq_ckpt = None
args.awq_wbits = 16
args.awq_groupsize = -1
args.model_names = []
args.conv_template = None
args.limit_worker_concurrency = 5
args.stream_interval = 2
args.no_register = False
args.embed_in_truncate = False
args.load_kwargs = {"pre_seq_len": 16} # 改*************************
for k, v in kwargs.items():
setattr(args, k, v)
if args.gpus:
if args.num_gpus is None:
args.num_gpus = len(args.gpus.split(','))
if len(args.gpus.split(",")) < args.num_gpus:
raise ValueError(
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
gptq_config = GptqConfig(
ckpt=args.gptq_ckpt or args.model_path,
wbits=args.gptq_wbits,
groupsize=args.gptq_groupsize,
act_order=args.gptq_act_order,
)
awq_config = AWQConfig(
ckpt=args.awq_ckpt or args.model_path,
wbits=args.awq_wbits,
groupsize=args.awq_groupsize,
)
worker = ModelWorker(
controller_addr=args.controller_address,
worker_addr=args.worker_address,
worker_id=worker_id,
model_path=args.model_path,
model_names=args.model_names,
limit_worker_concurrency=args.limit_worker_concurrency,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
stream_interval=args.stream_interval,
conv_template=args.conv_template,
embed_in_truncate=args.embed_in_truncate,
load_kwargs=args.load_kwargs #改*************************
)
sys.modules["fastchat.serve.model_worker"].args = args
sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
app.title = f"FastChat LLM Server ({args.model_names[0]})"
app._worker = worker
return app
至此,我们完成了langchain-chatchat加载p-tuning的全部操作,将ptuing的路径添加到model_config的llm_dict,如 ``` chatglm2-6b: 'p-tuning-peft'
即可以如下方式加载p-tuning:
```shell
PEFT_SHARE_BASE_WEIGHTS=true python startup.py -a
预处理知识库文件⚓︎
在载入知识库文件的时候,直接上传文档虽然能实现基础的问答,但是,其效果并不能发挥到最佳水平。因此,我们建议开发者对知识库文件做出以下的预处理。 以下方式的预处理如果执行了,有概率提升模型的召回率。
1. 使用TXT / Markdown
等格式化文件,并按照要点排版⚓︎
例如,以下段落应该被处理成如下内容后在嵌入知识库,会有更好的效果。
原文: PDF类型
查特查特团队荣获AGI Playground Hackathon黑客松“生产力工具的新想象”赛道季军
2023年10月16日, Founder Park在近日结束的AGI Playground Hackathon黑客松比赛中,查特查特团队展现出色的实力,荣获了“生产力工具的新想象”赛道季军。本次比赛由Founder Park主办,并由智谱、Dify、Zilliz、声网、AWS云服务等企业协办。
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。比赛规定,所有参赛选手必须在短短的48小时内完成一个应用产品开发,同时要求使用智谱大模型及Zilliz向量数据库进行开发。
查特查特团队的现场参赛人员由两名项目成员组成:
来自A大学的小明负责了Agent旅游助手的开发、场地协调以及团队住宿和行程的安排;在保证团队完赛上做出了主要贡献。作为队长,栋宇坚持自信,创新,沉着的精神,不断提出改进方案并抓紧落实,遇到相关问题积极请教老师,提高了团队开发效率。
作为核心开发者的B公司小蓝,他则主管Agent智能知识库查询开发、Agent底层框架设计、相关API调整和UI调整。在最后,他代表团队在规定的时间内呈现了产品的特点和优势,并完美的展示了产品demo。为团队最终产品能够得到奖项做出了重要贡献。
# 查特查特团队荣获AGI Playground Hackathon黑客松“生产力工具的新想象”赛道季军。
## 报道简介
2023年10月16日, Founder Park在近日结束的AGI Playground Hackathon黑客松比赛中,查特查特团队展现出色的实力,荣获了“生产力工具的新想象”赛道季军。本次比赛由Founder Park主办,并由智谱、Dify、Zilliz、声网、AWS云服务等企业协办。
## 比赛介绍
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。比赛规定,所有参赛选手必须在短短的48小时内完成一个应用产品开发,同时要求使用智谱大模型及Zilliz向量数据库进行开发。
## 获奖队员简介
+ 小明,A大学
+ 负责Agent旅游助手的开发、场地协调以及团队住宿和行程的安排
+ 在保证团队完赛上做出了主要贡献。作为队长,栋宇坚持自信,创新,沉着的精神,不断提出改进方案并抓紧落实,遇到相关问题积极请教老师,提高了团队开发效率。
+ 小蓝,B公司
+ 主管Agent智能知识库查询开发、Agent底层框架设计、相关API调整和UI调整。
+ 代表团队在规定的时间内呈现了产品的特点和优势,并完美的展示了产品demo。
2. 减少文件中冲突的内容,分门别类存放数据⚓︎
就像人类寻找相关点一样,如果在多份文件中存在相似的内容,可能会导致模型无法准确的搜索到相关内容。 因此,需要减少文件中相似的内容,或将其分在不同的知识库中。 例如,以下两个句子中,如果搜索外籍教师,则具有歧义,非常容易搜索到错误答案。
文件一:
在大数据专业中,我们已经拥有超过1/3的外籍博士和教师。
文件二:
本专业具有40%的外籍教师比例,
本专业有博士生10人,研究生12人。
3. 减少具有歧义的句子⚓︎
知识库中应该减少具有歧义的句子和段落,或者汉语的高级用法,例如
1. 他说他会杀了那个人。
2. 你说啥子?
3. 我喜欢你的头发。
4. 地板真的滑,我差点没摔倒。
4. 减少单个文件的大小,减少文件中的特殊符号⚓︎
- 上传知识库的单个文件不建议超过5MB,以免出现向量化中断卡死等情况。同时,上传大文件不要使用faiss数据库。
- 减少上传文件中的中文符号,特殊符号,无意义空格等。
自定义的关键词调整Embedding模型⚓︎
1.首先准备一个关键字的文本文件,每一行是一个关键字。例如:
文件key_words.txt:
iphone13pro
中石油
EMBEDDING_KEYWORD_FILE = "embedding_keywords.txt"
embeddings/add_embedding_keywords.py
输入的文本(这里只是一个没分隔的一串字符):iphone13pro
生成的token id序列:[101, 21128, 102]
token到token id的映射:
[CLS]->101
iphone13pro->21128
[SEP]->102
输入的文本:中石油
生成的token id序列:[101, 21129, 102]
token到token id的映射:
[CLS]->101
中石油->21129
[SEP]->102
实际使用效果⚓︎
在这里,我们放置了一些成功调用的效果图,方便开发者进行查看自己是否成功运行了框架。
检查是否成功上传/管理自己的知识库⚓︎
在WebUI界面上传知识库,则必须保证知识库进行向量化,成功之后,文件会被切分并在向量位置打钩。 下图展示了成功上传知识库的画面
请确保所有知识库都已经进行了向量化。
检查是否成功开启LLM对话⚓︎
若打开webui后,在该模式下能成功跟大模型对话即成功调用。
下图为成功调用LLM的效果图:
检查是否成功调用知识库/搜索⚓︎
若成功调用知识库,则你应该能看到,在大模型回答的下方有一个知识库匹配结果
的展开框,并且内部显示了相关的匹配结果。
如果没有搜索到相关内容,则会提示根据已知信息无法回答问题
,并且下拉框中没有任何内容。
下图为成功调用知识库效果图:
在这个案例中,第一次用户的提问无法在知识库中寻找到合适的答案,因此,大模型回答了根据已知信息无法回答问题
。
第二次用户的提问能在知识库中寻找到合适的答案,因此,大模型给出了一个正确的回答。
注意: 知识库的搜索情况取决于嵌入模型的准度,分词器的设置,知识库的排版和大模型的数量,提示词设定等多个因素。因此,需要开发者进行深度的优化和调试。
检查是否成功调用Agent工具⚓︎
若成功调用Agent工具,则你应该看到大模型完整的思维过程,这会在思考过程
下拉框中显示出来。如果成功调用Agent工具,则你应该看到Markdown引用效果的工具使用情况。
在Agent对话模式中,思考过程
中显示的是大模型的思考过程,而下拉框之前的内容为大模型的Final Answer
,缺乏中间的运算过程。
下图展现了一个成功调用Agent工具的效果图:
本框架支持模型连续掉用多个Agent工具,下图展示了一个一个提问中大模型连续调用多个Agent工具的效果图:
在这个案例中,3900
是大模型的最终答案,其余都是思考过程。
创建日期: December 6, 2023