附表⚓︎
1. 1. 标准正态分布表⚓︎
本表列出了标准正态分布函数 \(\Phi(x)=(\sqrt{2 \pi})^{-1} \int_{-\infty}^{x} \mathrm{e}^{-t^{2} / 2} \mathrm{~d} t\) 当 \(0 \leqslant x \leqslant 2.98\) 之值. 此范围内不能直接查出之值, 可用线性揷值 法. 对 \(x<0\) 可用 \(\Phi(x)=1-\Phi(-x)\) 化为 \(x>0\) 的情况.
\(x\) | 0.00 | 0.02 | 0.04 | 0.06 | 0.08 |
---|---|---|---|---|---|
0.0 | 0.5000 | 0.5030 | 0.5160 | 0.5239 | 0.5319 |
0.1 | 0.5398 | 0.5478 | 0.5557 | \(0+5636\) | 0.5714 |
0.2 | 0.5793 | 0.5871 | 0.5948 | 0.6026 | 0.6103 |
0.3 | 0.6179 | 0.6255 | 0.6331 | 0.6406 | 0.6480 |
0.4 | 0.6554 | 0.6628 | 0.6700 | 0.6772 | 0.6844 |
0.5 | 0.6915 | 0.6985 | 0.7054 | 0.7123 | 0.7190 |
0.6 | 0.7257 | 0.7324 | 0.7389 | 0.7454 | 0.7517 |
0.7 | 0.7580 | 0.7642 | 0.7703 | 0.7764 | 0.7823 |
0.8 | 0.7881 | 0.7939 | 0.7995 | 0.8051 | 0.8106 |
0.9 | 0.8159 | 0.8212 | 0.8264 | 0.8315 | 0.8365 |
1.0 | 0.8413 | 0.8461 | 0.8508 | 0.8554 | 0.8599 |
1,1 | 0.8643 | 0.8686 | 0.8729 | 0.8770 | 0.8810 |
1.2 | 0.8849 | 0.8888 | 0.8925 | 0.8962 | 0.8997 |
1.3 | 0.90320 | 0.90658 | 0.90988 | 0.91809 | 0.91621 |
1.4 | 0.91924 | 0.92220 | 0.92507 | 0.92785 | 0.93056 |
1.5 | 0.93319 | 0.93574 | 0.93822 | 0.94062 | 0.94295 |
1.6 | 0.94520 | 0.94738 | 0.94950 | 0.95154 | 0.95352 |
1.7 | 0.95543 | 0.95728 | 0.95907 | 0.96080 | 0.96246 |
1.8 | 0.96407 | 0.96562 | 0.96712 | 0.96856 | 0.96995 |
续表
\(x\) | 0.00 | 0.02 | 0.04 | 0.06 | 0.08 |
---|---|---|---|---|---|
1.9 | 0.97128 | 0.97257 | 0.97381 | 0.97500 | 0.97615 |
2.0 | 0.97725 | 0.97831 | 0.97932 | 0.98030 | 0.98124 |
2.1 | 0.98214 | 0.98300 | 0.98382 | 0.98461 | 0.98537 |
2.2 | 0.98610 | 0.98679 | 0.98745 | 0.98809 | 0.98870 |
2.3 | 0.98928 | 0.98988 | 0.99036 | 0.99086 | 0.99134 |
2.4 | 0.99180 | 0.99224 | 0.99266 | 0.99305 | 0.99343 |
2.5 | 0.99379 | 0.99413 | 0.99446 | 0.99477 | 0.99506 |
2.6 | 0.99534 | 0.99560 | 0.99586 | 0.99609 | 0.99632 |
2.7 | 0.99653 | 0.99674 | 0.99693 | 0.99711 | 0.99728 |
2.8 | 0.99745 | 0.99760 | 0.99774 | 0.99788 | 0.99801 |
2.9 | 0.99813 | 0.99825 | 0.99836 | 0.96846 | 0.99856 |
2. 2. 标准正态分布双侧上分位点 \(u_{\alpha / 2}\) 表⚓︎
本表列出满足条件 \(P\left(|X| \geqslant u_{\alpha / 2}\right)=a\) 的 \(u_{\alpha / 2}\), 其中 \(X\) 服从 标准正态分布。
\(a\) | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 |
---|---|---|---|---|---|
0.00 | - | 1.6449 | 1.2816 | 1.0364 | 0.8416 |
0.01 | 2.5758 | 1.5982 | 1.2536 | 1.0152 | 0.8239 |
0.02 | 2.3268 | 1.5548 | 1.2265 | 0.9945 | 0.8064 |
0.03 | 2.1701 | 1.5141 | 1.2004 | 0.9741 | 0.7892 |
0.04 | 2.0537 | 1.4758 | 1.1750 | 0.9542 | 0.7722 |
0.05 | 1.9600 | 1.4395 | 1.1503 | 0.9346 | 0.7554 |
0.06 | 1.8808 | 1.4051 | 1.1264 | 0.9154 | 0.7388 |
0.07 | 1.8119 | 1.3722 | 1.1031 | 0.8965 | 0.7225 |
0.08 | 1.7507 | 1.3408 | 1.0808 | 0.8779 | 0.7063 |
0.09 | 1.6954 | 1.3106 | 1.0581 | 0.8596 | 0.6903 |
3. 3. \(t\) 分布上侧分位点 \(t_{n}(\alpha)\) 表⚓︎
设随机变量 \(X\) 服从自由度为 \(n\) 的 \(t\) 分布, 本表列出满足条件 \(P\left(X>t_{n}(\alpha)\right)=\alpha\) 的值 \(t_{n}(\alpha)\).
0.05 | 0.025 | 0.01 | 0.005 | 0.05 | 0.025 | 0.01 | 0.005 | ||
---|---|---|---|---|---|---|---|---|---|
1 | 6.314 | 12.706 | 31.821 | 63.657 | 16 | 1.746 | 2.120 | 2.583 | 2.921 |
2 | 2.970 | 4.303 | 6.965 | 9.925 | 17 | 1.740 | 2.110 | 2.567 | 2.898 |
3 | 2.353 | 3.182 | 4.541 | 5.841 | 18 | 1.734 | 2.101 | 2.552 | 2.878 |
4 | 2.132 | 2.776 | 3.747 | 4.604 | 19 | 1.729 | 2.093 | 2.539 | 2.861 |
5 | 2.015 | 2.571 | 3.365 | 4.032 | 20 | 1.725 | 2.086 | 2.528 | 2.845 |
6 | 1.943 | 2.447 | 3.143 | 3.701 | 21 | 1.721 | 2.080 | 2.518 | 2.831 |
7 | 1.895 | 2.365 | 2.998 | 3.499 | 22 | 1.717 | 2.074 | 2.508 | 2.819 |
8 | 1.860 | 2.306 | 2.896 | 3.355 | 23 | 1.714 | 2.069 | 2.500 | 2.807 |
9 | 1.833 | 2.262 | 2.821 | 3.250 | 24 | \(\cdot 1.711\) | 2.064 | 2.492 | 2.797 |
10 | 1.812 | 2.208 | 2.764 | 3.169 | 25 | 1.708 | 2.060 | 2.485 | 2.787 |
11 | 1.796 | 2.201 | 2.718 | 3.106 | 26 | 1.706 | 2.056 | 2.479 | 2.779 |
12 | 1.782 | 2.179 | 2.861 | 3.055 | 27 | 1.703 | 2.052 | 2.473 | 2.771 |
13 | 1.771 | 2.160 | 2.650 | 3.012 | 28 | 1.701 | 2.048 | 2.467 | 2.763 |
14 | 1.761 | 2.145 | 2.624 | 2.977 | 29 | 1.699 | 2.045 | 2.462 | 2.756 |
15 | 1.753 | 2.131 | 2.602 | 2.947 | 30 | 1.697 | 2.042 | 2.457 | 2.750 |
- 普阿松分布表 \(P(X=r)=\frac{\lambda^{r}}{r !} \mathrm{e}^{-\lambda}\)
\(r\) | \(\lambda\) | |||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | |
0 | .90483 | .81873 | .74081 | .67032 | .60653 | .54881 | .49658 | .44932 |
1 | .09048 | .16374 | .22224 | .26812 | .30326 | .32928 | .34761 | .35946 |
2 | .00452 | .01637 | .03333 | .05362 | .07581 | .09878 | .12166 | .14378 |
3 | .00015 | .00109 | .00333 | .00715 | .01263 | .01975 | .02838 | .03834 |
4 | .00000 | .00005 | .00025 | .00071 | .00158 | .00296 | .00496 | .00766 |
5 | .00000 | .00001 | .00005 | .00015 | .00035 | .00069 | .00122 | |
6 | .00000 | .00000 | .00001 | .00003 | .00008 | .00016 | ||
7 | .00000 | .00000 | .00000 | .00001 | ||||
8 | \(2+s^{2}\) | .00001 | .00000 | |||||
\(r\) | \(\lambda\) | |||||||
0.9 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | |
0 | .40657 | .36787 | .22313 | .13533 | .08208 | .04978 | .03019 | .01831 |
1 | .36591 | .36787 | .33469 | .27067 | .20521 | .14936 | .10569 | .07326 |
2 | .16466 | .18394 | .25102 | .27067 | .25651 | .22404 | .18495 | .14652 |
3 | .04939 | .06131 | .12551 | .18044 | .21376 | .22404 | .21578 | .19536 |
4 | .01111 | .01532 | .04706 | .09022 | .13360 | .16803 | .18881 | .19536 |
5 | .00200 | .00306 | .01412 | .03608 | .06680 | .10081 | .13216 | .15629 |
6 | .00030 | .00051 | .00353 | .01203 | .02783 | .05040 | .07709 | .10419 |
7 | .00003 | .00007 | .00075 | .00343 | .00994 | .02160 | .03854 | .05954 |
8 | .00000 | .00000 | .00014 | .00085 | .00310 | .00810 | .01686 | .02977 |
9 | .00000 | .00002 | .00019 | .00086 | .00270 | .00655 | .01323 | |
10 | .00000 | .00003 | .00021 | .00081 | .00229 | .00529 | ||
11 | .00000 | .00004 | .00022 | .00073 | .00192 | |||
12 | .00000 | .00001 | .00005 | .00021 | .00064 | |||
13 | .00000 | .00001 | .00005 | .00019 | ||||
14 | .00000 | .00001 | .00005 | |||||
15 | .00000 | .00000 | .00001 | |||||
16 | er | .00000 | .00000 | |||||
17 | .00000 |
4. 5. 卡方分布上侧分位点 \(\chi_{n}^{2}(\alpha)\) 表⚓︎
设随机变量 \(X\) 服从自由度为 \(n\) 的卡方分布, 本表列出满足条 件 \(P\left(X>\chi_{n}^{2}(\alpha)\right)=\alpha\) 的值 \(\chi_{n}^{2}(\alpha)\).
0.995 | 0.99 | 0.975 | 0.95 | 0.90 | 0.75 | 0.50 | |
---|---|---|---|---|---|---|---|
1 | - | 0.0002 | 0.001 | 0.004 | 0.016 | 0.102 | 0.455 |
2 | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 0.575 | 1.386 |
3 | 0.072 | 0.115 | 0.216 | 0.352 | 0.584 | 1.213 | 2.366 |
4 | 0.207 | 0.297 | 0.484 | 0.711 | 1.064 | 1.923 | 3.357 |
5 | 0.412 | 0.554 | 0.831 | 1.145 | 1.610 | 2.675 | 4.351 |
6 | 0.676 | 0.872 | 1.237 | 1.635 | 2.204 | 3.455 | 5.348 |
7 | 0.989 | 1.239 | 1.690 | 2.167 | 2.833 | 4.255 | 6.340 |
8 | 1.344 | 1.646 | 2.180 | 2.733 | 3.490 | 5.071 | 7.34 |
9 | 1.735 | 2.088 | 2.700 | 3.325 | 4.168 | 5.899 | 8.34 |
10 | 2.156 | 2.558 | 3.247 | 3.940 | 4.865 | 6.737 | 9.342 |
11 | 2.603 | 3.053 | 3.816 | 4.575 | 5.578 | 7.584 | 10.34 |
12 | 3.074 | 3.571 | 4.404 | 5.226 | 6.304 | 8.438 | 11.340 |
13 | 3.565 | 4.107 | 5.009 | 5.892 | 7.042 | 9.299 | 12.340 |
14 | 4.075 | 4.660 | 5.629 | 6.571 | 7.790 | 10.165 | 13.33 |
15 | 4.601 | 5.229 | 6.262 | 7.261 | 8.547 | 11.037 | 14.33 |
16 | 5.142 | 5.812 | 6.908 | 7.962 | 9.312 | 11.912 | 15.338 |
17 | 5.697 | 6.408 | 7.564 | 8.672 | 10.085 | 12.792 | 16.338 |
18 | 6.265 | 7.015 | 8.231 | 9.390 | 10.865 | 13.675 | 17.338 |
19 | 6.844 | 7.633 | 8.907 | 10.117 | 11.651 | 14.562 | 18.338 |
20 | 7.434 | 8.260 | 9.591 | 10.851 | 12.443 | 15.452 | 19.33 |
21 | 8.034 | 8.897 | 10.283 | 11.591 | 13.240 | 16.344 | 20.33 |
22 | 8.643 | 9.542 | 10.982 | 12.338 | 14.042 | 17.240 | 21.33 |
23 | 9.260 | 10.196 | 11.689 | 13.091 | 14.848 | 18.137 | \(22.33^{\circ}\) |
24 | 9.886 | 10.856 | 12.401 | 13.848 | 15.659 | 19.037 | \(23.33^{\circ}\) |
25 | 10.520 | 11.524 | 13.120 | 14.611 | 16.473 | 19.939 | \(24.33^{\circ}\) |
26 | 11.160 | 12.198 | 13.844 | 15.379 | 17.292 | 20.843 | 25.33 |
27 | 11.808 | 12.879 | 14.573 | 16.151 | 18.114 | 21.749 | 26.33 |
28 | 12.461 | 13.565 | 15.308 | 16.928 | 18.939 | 22.657 | 27.33 |
29 | 13.121 | 14.257 | 16.047 | 17.708 | 19.768 | 23.567 | 28.33 |
30 | 13.787 | 14.954 | 16.791 | 18.493 | 20.599 | 24.478 | 29.33 |
. | 0.30 | 0.25 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
---|---|---|---|---|---|---|---|
1 | 1.074 | 1.323 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
2 | 2.408 | 2.773 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 |
3 | 3.665 | 4.108 | 6.251 | 7.815 | 9.348 | 11.345 | 12.838 |
4 | 4.878 | 5.385 | 7.779 | 9.488 | 11.143 | 13.277 | 14.860 |
5 | 6.064 | 6.626 | 9.236 | 11.071 | 12.833 | 15.086 | 16.750 |
6 | 7.231 | 7.841 | 10.645 | 12.592 | 14.449 | 16.812 | 18.548 |
7 | 8.383 | 9.037 | 12.017 | 14.067 | 16.013 | 18.475 | 20.278 |
8 | 9.524 | 10.219 | 13.362 | 15.507 | 17.535 | 20.090 | 21.955 |
9 | 10.656 | 11.389 | 14.684 | 16.919 | 19.023 | 21.666 | 23.589 |
10 | 11.781 | 12.549 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188 |
11 | 12.899 | 13.701 | 17.275 | 19.675 | 21.920 | 24.725 | 26.757 |
12 | 14.011 | 14.845 | 18.549 | 21.026 | 23.337 | 26.217 | 28.299 |
13 | 15.119 | 15.984 | 19.812 | 22.362 | 24.736 | 27.688 | 29.819 |
14 | 16.222 | 17.117 | 21.064 | 23.685 | 26.119 | 29.141 | 31.319 |
15 | 17.322 | 18.245 | 22.307 | 24.996 | 27.488 | 30.578 | 32.801 |
16 | 18.418 | 19.369 | 23.542 | 26.296 | 28.845 | 32.000 | 34.267 |
17 | 19.511 | 20.489 | 24.769 | 27.587 | 30.191 | 33.409 | 35.718 |
18 | 20.601 | 21.605 | 25.989 | 28.869 | 31.526 | 34.805 | 37.156 |
19 | 21.689 | 22.718 | 27.204 | 30.144 | 32.852 | 36.191 | 38.582 |
20 | 22.775 | 23.828 | 28.412 | 31.410 | 34.170 | 37.566 | 39.997 |
21 | 23.858 | 24.935 | 29.615 | 32.671 | 35.479 | 38.932 | 41.401 |
22 | 24.939 | 26.039 | 30.813 | 33.924 | 36.781 | 40.289 | 42.796 |
23 | 26.018 | 27.141 | 32.007 | 35.172 | 38.076 | 41.638 | 44.181 |
24 | 27.096 | 28.241 | 33.196 | 36.415 | 39.364 | 42.980 | 45.559 |
25 | 28.172 | 29.339 | 34.382 | 37.652 | 40.646 | 44.314 | 46.928 |
26 | 29.246 | 30.435 | 35.563 | 38.885 | 41.923 | 45.642 | 48.290 |
27 | 30.319 | 31.528 | 36.741 | 40.113 | 43.194 | 46.963 | 49.645 |
28 | 31.391 | 32.620 | 37.916 | 41.337 | 44.461 | 48.278 | 50.993 |
29 | 32.461 | 33.711 | 39.087 | 42.557 | 45.722 | 49.588 | 52.336 |
30 | 33.530 | 34.800 | 40.256 | 43.773 | 46.979 | 50.892 | 53.672 |
5. 6. \(\boldsymbol{F}\) 分布上侧分位数 \(F_{m, n}(\alpha)\) 表⚓︎
设随机变量 \(X\) 服从自由度为 \(m\) 和 \(n\) 的 \(F\) 分布, 本表列出满 足条件 \(P\left(X>F_{m, n}(\alpha)=\alpha\right.\) 的值 \(F_{m, n}(\alpha)\).
A. \(\alpha=0.05\)
\(n\) | 1 | 2 | 3 | 4 | \(5^{\circ}\) | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 | 161 | 200 | 216 | 225 | 230 | 234 | 237 | 239 |
2 | 18.5 | 19.0 | 19.2 | 19.2 | 19.3 | 19.3 | 19.4 | 19.4 |
3 | 10.1 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 |
4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 |
5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 |
6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 |
7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 |
8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 |
9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 |
10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 |
11 | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 |
12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 |
13 | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 |
14 | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 |
15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 |
16 | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 |
17 | 4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 |
18 | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 |
19 | 4.38 | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 |
20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 |
21 | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 |
22 | 4.30 | 3.44 | 3.05 | 2.82 | 2.66 | 2.55 | 2.46 | 2.40 |
23 | 4.28 | 3.42 | 3.03 | 2.80 | 2.64 | 2.53 | 2.44 | 2.37 |
24 | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 |
25 | 4.24 | 3.39 | 2.99 | 2.76 | 2.60 | 2.49 | 2.40 | 2.34 |
26 | 4.23 | 3.37 | 2.98 | 2.74 | 2.59 | 2.47 | 2.39 | 2.32 |
27 | 4.21 | 3.35 | 2.96 | 2.73 | 2.57 | 2.46 | 2.37 | 2.31 |
28 | 4.20 | 3.34 | 2.95 | 2.71 | 2.56 | 2.45 | 2.36 | 2.29 |
29 | 4.18 | 3.33 | 2.93 | 2.70 | 2.55 | 2.43 | 2.35 | 2.28 |
30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 |
401006
\(n\) | 1 | 2 | 7 | 8 | ||||
---|---|---|---|---|---|---|---|---|
1 | 405 | 500 | 540 | 563 | 576 | 586 | 593 | 598 |
2 | 98.5 | 99.0 | 99.2 | 99.2 | 99.3 | 3 | 99.4 | 99.4 |
3 | 34.1 | 30.8 | 29.5 | 28.7 | . | 9 | 27.7 | 27.5 |
4 | 21.2 | 18.0 | 16.7 | 16.0 | 15.5 | 15.2 | 15.0 | 14.8 |
5 | 16.3 | 13.3 | 12.1 | 11.4 | 11.0 | 10.7 | 10.5 | 10.3 |
6 | 13.7 | 10.9 | 9.78 | 9.15 | 8.75 | 8.47 | 8.26 | 8.10 |
7 | 12.2 | 9.55 | 8.45 | 7.85 | 7.46 | 7.19 | 6.99 | 6.84 |
8 | 11.3 | 8.65 | 7.59 | 7.01 | 6.63 | 6.37 | 6.18 | 6.03 |
9 | 10.6 | 8.02 | 6.99 | 6.42 | 6.06 | 5.80 | 5.61 | 5.47 |
10 | 10.0 | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 | 5.20 | 5.06 |
11 | 9.65 | 7.21 | 6.22 | 5.67 | 5.32 | 5.07 | 4.89 | 4.74 |
12 | 9.33 | 6.98 | 5.95 | 5.41 | 5.06 | 4.82 | 4.64 | 4.50 |
13 | 9.07 | 6.70 | 5.74 | 5.21 | 4.86 | 4.62 | 4.44 | 4.30 |
14 | 8.86 | 6.51 | 5.56 | 5.04 | 4.70 | 4.46 | 4.23 | 4.14 |
15 | 8.68 | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | \(4.14^{\circ}\) | 4.00 |
16 | 8.53 | 6.23 | 5.29 | 4.77 | 4.44 | 4.20 | 4.03 | 3.89 |
17 | 8.40 | 6.11 | 5.18 | 4.67 | 4.34 | 4.10 | 3.93 | 3.79 |
18 | 8.29 | 6.01 | 5.09 | 4.58 | 4.25 | 4.01 | 3.84 | 3.71 |
19 | 8.18 | 5.93 | 5.01 | 4.50 | 4.17 | 3.94 | 3.77 | 3.63 |
20 | 8.10 | 5.83 | 4.94 | 4.43 | 4.10 | 3.87 | 3.70 | 3.56 |
21 | 8.02 | 5.78 | 4.87 | 4.37 | 4.04 | 3.81 | 3.64 | 3.51 |
22 | 7.95 | 5.72 | 4.82 | 4.31 | 3.99 | 3.76 | 3.59 | 3.45 |
23 | 7.88 | 5.66 | 4.76 | 4.26 | 3.94 | 3.71 | 3.54 | 3.41 |
24 | 7.82 | 5.61 | 4.72 | 4.22 | 3.90 | 3.67 | 3.50 | 3.36 |
25 | 7.77 | 5.57 | 4.68 | 4.18 | 3.86 | 3.63 | 3.46 | 3.32 |
26 | 7.72 | 5.53 | 4.64 | 4.14 | 3.82 | 3.59 | 3.42 | 3.29 |
27 | 7.68 | 5.49 | 4.60 | 4.11 | 3.78 | 3.56 | 3.39 | 3.26 |
28 | 7.64 | 5.45 | 4.57 | 4.07 | 3.75 | 3.53 | 3.36 | 3.23 |
29 | 7.60 | 5.42 | 4.54 | 4.04 | 3.73 | 3.50 | 3.33 | 3.20 |
30 | 7.56 | 5.39 | 4.51 | 4.02 | 3.70 | 3.47 | 3.30 | 3.17 |
评论
登录github的账号后,可以直接在下方评论框中输入。
如果想进行更详细的讨论(如排版、上传图片等),选择一个反应后并点击上方的文字,进入论坛页面。