%load_ext d2lbook.tab
tab.interact_select(['mxnet', 'pytorch', 'tensorflow', 'jax'])
Object-Oriented Design for Implementation⚓︎
:label:sec_oo-design
In our introduction to linear regression, we walked through various components including the data, the model, the loss function, and the optimization algorithm. Indeed, linear regression is one of the simplest machine learning models. Training it, however, uses many of the same components that other models in this book require. Therefore, before diving into the implementation details it is worth designing some of the APIs that we use throughout. Treating components in deep learning as objects, we can start by defining classes for these objects and their interactions. This object-oriented design for implementation will greatly streamline the presentation and you might even want to use it in your projects.
Inspired by open-source libraries such as PyTorch Lightning,
at a high level
we wish to have three classes:
(i) Module
contains models, losses, and optimization methods;
(ii) DataModule
provides data loaders for training and validation;
(iii) both classes are combined using the Trainer
class, which allows us to
train models on a variety of hardware platforms.
Most code in this book adapts Module
and DataModule
. We will touch upon the Trainer
class only when we discuss GPUs, CPUs, parallel training, and optimization algorithms.
%%tab mxnet
import time
import numpy as np
from d2l import mxnet as d2l
from mxnet.gluon import nn
%%tab pytorch
import time
import numpy as np
from d2l import torch as d2l
import torch
from torch import nn
%%tab tensorflow
import time
import numpy as np
from d2l import tensorflow as d2l
import tensorflow as tf
%%tab jax
from dataclasses import field
from d2l import jax as d2l
from flax import linen as nn
from flax.training import train_state
from jax import numpy as jnp
import numpy as np
import jax
import time
from typing import Any
Utilities⚓︎
:label:oo-design-utilities
We need a few utilities to simplify object-oriented programming in Jupyter notebooks. One of the challenges is that class definitions tend to be fairly long blocks of code. Notebook readability demands short code fragments, interspersed with explanations, a requirement incompatible with the style of programming common for Python libraries. The first utility function allows us to register functions as methods in a class after the class has been created. In fact, we can do so even after we have created instances of the class! It allows us to split the implementation of a class into multiple code blocks.
%%tab all
def add_to_class(Class): #@save
"""Register functions as methods in created class."""
def wrapper(obj):
setattr(Class, obj.__name__, obj)
return wrapper
Let's have a quick look at how to use it. We plan to implement a class A
with a method do
. Instead of having code for both A
and do
in the same code block, we can first declare the class A
and create an instance a
.
%%tab all
class A:
def __init__(self):
self.b = 1
a = A()
Next we define the method do
as we normally would, but not in class A
's scope. Instead, we decorate this method by add_to_class
with class A
as its argument. In doing so, the method is able to access the member variables of A
just as we would expect had it been included as part of A
's definition. Let's see what happens when we invoke it for the instance a
.
%%tab all
@add_to_class(A)
def do(self):
print('Class attribute "b" is', self.b)
a.do()
The second one is a utility class that saves all arguments in a class's __init__
method as class attributes. This allows us to extend constructor call signatures implicitly without additional code.
%%tab all
class HyperParameters: #@save
"""The base class of hyperparameters."""
def save_hyperparameters(self, ignore=[]):
raise NotImplemented
We defer its implementation into :numref:sec_utils
. To use it, we define our class that inherits from HyperParameters
and calls save_hyperparameters
in the __init__
method.
%%tab all
# Call the fully implemented HyperParameters class saved in d2l
class B(d2l.HyperParameters):
def __init__(self, a, b, c):
self.save_hyperparameters(ignore=['c'])
print('self.a =', self.a, 'self.b =', self.b)
print('There is no self.c =', not hasattr(self, 'c'))
b = B(a=1, b=2, c=3)
The final utility allows us to plot experiment progress interactively while it is going on. In deference to the much more powerful (and complex) TensorBoard we name it ProgressBoard
. The implementation is deferred to :numref:sec_utils
. For now, let's simply see it in action.
The draw
method plots a point (x, y)
in the figure, with label
specified in the legend. The optional every_n
smooths the line by only showing \(1/n\) points in the figure. Their values are averaged from the \(n\) neighbor points in the original figure.
%%tab all
class ProgressBoard(d2l.HyperParameters): #@save
"""The board that plots data points in animation."""
def __init__(self, xlabel=None, ylabel=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
ls=['-', '--', '-.', ':'], colors=['C0', 'C1', 'C2', 'C3'],
fig=None, axes=None, figsize=(3.5, 2.5), display=True):
self.save_hyperparameters()
def draw(self, x, y, label, every_n=1):
raise NotImplemented
In the following example, we draw sin
and cos
with a different smoothness. If you run this code block, you will see the lines grow in animation.
%%tab all
board = d2l.ProgressBoard('x')
for x in np.arange(0, 10, 0.1):
board.draw(x, np.sin(x), 'sin', every_n=2)
board.draw(x, np.cos(x), 'cos', every_n=10)
Models⚓︎
:label:subsec_oo-design-models
The Module
class is the base class of all models we will implement. At the very least we need three methods. The first, __init__
, stores the learnable parameters, the training_step
method accepts a data batch to return the loss value, and finally, configure_optimizers
returns the optimization method, or a list of them, that is used to update the learnable parameters. Optionally we can define validation_step
to report the evaluation measures.
Sometimes we put the code for computing the output into a separate forward
method to make it more reusable.
:begin_tab:jax
With the introduction of dataclasses
in Python 3.7, classes decorated with @dataclass
automatically add magic
methods such as __init__
and __repr__
. The member variables are defined
using type annotations. All Flax modules are Python 3.7 dataclasses.
:end_tab:
%%tab pytorch
class Module(d2l.nn_Module, d2l.HyperParameters): #@save
"""The base class of models."""
def __init__(self, plot_train_per_epoch=2, plot_valid_per_epoch=1):
super().__init__()
self.save_hyperparameters()
self.board = ProgressBoard()
def loss(self, y_hat, y):
raise NotImplementedError
def forward(self, X):
assert hasattr(self, 'net'), 'Neural network is defined'
return self.net(X)
def plot(self, key, value, train):
"""Plot a point in animation."""
assert hasattr(self, 'trainer'), 'Trainer is not inited'
self.board.xlabel = 'epoch'
if train:
x = self.trainer.train_batch_idx / \
self.trainer.num_train_batches
n = self.trainer.num_train_batches / \
self.plot_train_per_epoch
else:
x = self.trainer.epoch + 1
n = self.trainer.num_val_batches / \
self.plot_valid_per_epoch
self.board.draw(x, d2l.numpy(d2l.to(value, d2l.cpu())),
('train_' if train else 'val_') + key,
every_n=int(n))
def training_step(self, batch):
l = self.loss(self(*batch[:-1]), batch[-1])
self.plot('loss', l, train=True)
return l
def validation_step(self, batch):
l = self.loss(self(*batch[:-1]), batch[-1])
self.plot('loss', l, train=False)
def configure_optimizers(self):
raise NotImplementedError
%%tab mxnet, tensorflow, jax
class Module(d2l.nn_Module, d2l.HyperParameters): #@save
"""The base class of models."""
if tab.selected('mxnet', 'tensorflow'):
def __init__(self, plot_train_per_epoch=2, plot_valid_per_epoch=1):
super().__init__()
self.save_hyperparameters()
self.board = ProgressBoard()
if tab.selected('tensorflow'):
self.training = None
if tab.selected('jax'):
# No need for save_hyperparam when using Python dataclass
plot_train_per_epoch: int = field(default=2, init=False)
plot_valid_per_epoch: int = field(default=1, init=False)
# Use default_factory to make sure new plots are generated on each run
board: ProgressBoard = field(default_factory=lambda: ProgressBoard(),
init=False)
def loss(self, y_hat, y):
raise NotImplementedError
if tab.selected('mxnet', 'tensorflow'):
def forward(self, X):
assert hasattr(self, 'net'), 'Neural network is defined'
return self.net(X)
if tab.selected('tensorflow'):
def call(self, X, *args, **kwargs):
if kwargs and "training" in kwargs:
self.training = kwargs['training']
return self.forward(X, *args)
if tab.selected('jax'):
# JAX & Flax do not have a forward-method-like syntax. Flax uses setup
# and built-in __call__ magic methods for forward pass. Adding here
# for consistency
def forward(self, X, *args, **kwargs):
assert hasattr(self, 'net'), 'Neural network is defined'
return self.net(X, *args, **kwargs)
def __call__(self, X, *args, **kwargs):
return self.forward(X, *args, **kwargs)
def plot(self, key, value, train):
"""Plot a point in animation."""
assert hasattr(self, 'trainer'), 'Trainer is not inited'
self.board.xlabel = 'epoch'
if train:
x = self.trainer.train_batch_idx / \
self.trainer.num_train_batches
n = self.trainer.num_train_batches / \
self.plot_train_per_epoch
else:
x = self.trainer.epoch + 1
n = self.trainer.num_val_batches / \
self.plot_valid_per_epoch
if tab.selected('mxnet', 'tensorflow'):
self.board.draw(x, d2l.numpy(value), (
'train_' if train else 'val_') + key, every_n=int(n))
if tab.selected('jax'):
self.board.draw(x, d2l.to(value, d2l.cpu()),
('train_' if train else 'val_') + key,
every_n=int(n))
if tab.selected('mxnet', 'tensorflow'):
def training_step(self, batch):
l = self.loss(self(*batch[:-1]), batch[-1])
self.plot('loss', l, train=True)
return l
def validation_step(self, batch):
l = self.loss(self(*batch[:-1]), batch[-1])
self.plot('loss', l, train=False)
if tab.selected('jax'):
def training_step(self, params, batch, state):
l, grads = jax.value_and_grad(self.loss)(params, batch[:-1],
batch[-1], state)
self.plot("loss", l, train=True)
return l, grads
def validation_step(self, params, batch, state):
l = self.loss(params, batch[:-1], batch[-1], state)
self.plot('loss', l, train=False)
def apply_init(self, dummy_input, key):
"""To be defined later in :numref:`sec_lazy_init`"""
raise NotImplementedError
def configure_optimizers(self):
raise NotImplementedError
:begin_tab:mxnet
You may notice that Module
is a subclass of nn.Block
, the base class of neural networks in Gluon.
It provides convenient features for handling neural networks. For example, if we define a forward
method, such as forward(self, X)
, then for an instance a
we can invoke this method by a(X)
. This works since it calls the forward
method in the built-in __call__
method. You can find more details and examples about nn.Block
in :numref:sec_model_construction
.
:end_tab:
:begin_tab:pytorch
You may notice that Module
is a subclass of nn.Module
, the base class of neural networks in PyTorch.
It provides convenient features for handling neural networks. For example, if we define a forward
method, such as forward(self, X)
, then for an instance a
we can invoke this method by a(X)
. This works since it calls the forward
method in the built-in __call__
method. You can find more details and examples about nn.Module
in :numref:sec_model_construction
.
:end_tab:
:begin_tab:tensorflow
You may notice that Module
is a subclass of tf.keras.Model
, the base class of neural networks in TensorFlow.
It provides convenient features for handling neural networks. For example, it invokes the call
method in the built-in __call__
method. Here we redirect call
to the forward
method, saving its arguments as a class attribute. We do this to make our code more similar to other framework implementations.
:end_tab:
:begin_tab:jax
You may notice that Module
is a subclass of linen.Module
, the base class of neural networks in Flax.
It provides convenient features for handling neural networks. For example, it handles the model parameters, provides the nn.compact
decorator to simplify code, invokes the __call__
method among other things.
Here we also redirect __call__
to the forward
method. We do this to make our code more similar to other framework implementations.
:end_tab:
Data⚓︎
:label:oo-design-data
The DataModule
class is the base class for data. Quite frequently the __init__
method is used to prepare the data. This includes downloading and preprocessing if needed. The train_dataloader
returns the data loader for the training dataset. A data loader is a (Python) generator that yields a data batch each time it is used. This batch is then fed into the training_step
method of Module
to compute the loss. There is an optional val_dataloader
to return the validation dataset loader. It behaves in the same manner, except that it yields data batches for the validation_step
method in Module
.
%%tab all
class DataModule(d2l.HyperParameters): #@save
"""The base class of data."""
if tab.selected('mxnet', 'pytorch'):
def __init__(self, root='../data', num_workers=4):
self.save_hyperparameters()
if tab.selected('tensorflow', 'jax'):
def __init__(self, root='../data'):
self.save_hyperparameters()
def get_dataloader(self, train):
raise NotImplementedError
def train_dataloader(self):
return self.get_dataloader(train=True)
def val_dataloader(self):
return self.get_dataloader(train=False)
Training⚓︎
:label:oo-design-training
:begin_tab:pytorch, mxnet, tensorflow
The Trainer
class trains the learnable parameters in the Module
class with data specified in DataModule
. The key method is fit
, which accepts two arguments: model
, an instance of Module
, and data
, an instance of DataModule
. It then iterates over the entire dataset max_epochs
times to train the model. As before, we will defer the implementation of this method to later chapters.
:end_tab:
:begin_tab:jax
The Trainer
class trains the learnable parameters params
with data specified in DataModule
. The key method is fit
, which accepts three arguments: model
, an instance of Module
, data
, an instance of DataModule
, and key
, a JAX PRNGKeyArray
. We make the key
argument optional here to simplify the interface, but it is recommended to always pass and initialize the model parameters with a root key in JAX and Flax. It then iterates over the entire dataset max_epochs
times to train the model. As before, we will defer the implementation of this method to later chapters.
:end_tab:
%%tab all
class Trainer(d2l.HyperParameters): #@save
"""The base class for training models with data."""
def __init__(self, max_epochs, num_gpus=0, gradient_clip_val=0):
self.save_hyperparameters()
assert num_gpus == 0, 'No GPU support yet'
def prepare_data(self, data):
self.train_dataloader = data.train_dataloader()
self.val_dataloader = data.val_dataloader()
self.num_train_batches = len(self.train_dataloader)
self.num_val_batches = (len(self.val_dataloader)
if self.val_dataloader is not None else 0)
def prepare_model(self, model):
model.trainer = self
model.board.xlim = [0, self.max_epochs]
self.model = model
if tab.selected('pytorch', 'mxnet', 'tensorflow'):
def fit(self, model, data):
self.prepare_data(data)
self.prepare_model(model)
self.optim = model.configure_optimizers()
self.epoch = 0
self.train_batch_idx = 0
self.val_batch_idx = 0
for self.epoch in range(self.max_epochs):
self.fit_epoch()
if tab.selected('jax'):
def fit(self, model, data, key=None):
self.prepare_data(data)
self.prepare_model(model)
self.optim = model.configure_optimizers()
if key is None:
root_key = d2l.get_key()
else:
root_key = key
params_key, dropout_key = jax.random.split(root_key)
key = {'params': params_key, 'dropout': dropout_key}
dummy_input = next(iter(self.train_dataloader))[:-1]
variables = model.apply_init(dummy_input, key=key)
params = variables['params']
if 'batch_stats' in variables.keys():
# Here batch_stats will be used later (e.g., for batch norm)
batch_stats = variables['batch_stats']
else:
batch_stats = {}
# Flax uses optax under the hood for a single state obj TrainState.
# More will be discussed later in the dropout and batch
# normalization section
class TrainState(train_state.TrainState):
batch_stats: Any
dropout_rng: jax.random.PRNGKeyArray
self.state = TrainState.create(apply_fn=model.apply,
params=params,
batch_stats=batch_stats,
dropout_rng=dropout_key,
tx=model.configure_optimizers())
self.epoch = 0
self.train_batch_idx = 0
self.val_batch_idx = 0
for self.epoch in range(self.max_epochs):
self.fit_epoch()
def fit_epoch(self):
raise NotImplementedError
Summary⚓︎
To highlight the object-oriented design
for our future deep learning implementation,
the above classes simply show how their objects
store data and interact with each other.
We will keep enriching implementations of these classes,
such as via @add_to_class
,
in the rest of the book.
Moreover,
these fully implemented classes
are saved in the D2L library,
a lightweight toolkit that makes structured modeling for deep learning easy.
In particular, it facilitates reusing many components between projects without changing much at all. For instance, we can replace just the optimizer, just the model, just the dataset, etc.;
this degree of modularity pays dividends throughout the book in terms of conciseness and simplicity (this is why we added it) and it can do the same for your own projects.
Exercises⚓︎
- Locate full implementations of the above classes that are saved in the D2L library. We strongly recommend that you look at the implementation in detail once you have gained some more familiarity with deep learning modeling.
- Remove the
save_hyperparameters
statement in theB
class. Can you still printself.a
andself.b
? Optional: if you have dived into the full implementation of theHyperParameters
class, can you explain why?
:begin_tab:mxnet
Discussions
:end_tab:
:begin_tab:pytorch
Discussions
:end_tab:
:begin_tab:tensorflow
Discussions
:end_tab:
:begin_tab:jax
Discussions
:end_tab:
创建日期: November 25, 2023