Dog Breed Identification (ImageNet Dogs) on Kaggle⚓︎
In this section, we will practice the dog breed identification problem on Kaggle. (The web address of this competition is https://www.kaggle.com/c/dog-breed-identification)
In this competition,
120 different breeds of dogs will be recognized.
In fact,
the dataset for this competition is
a subset of the ImageNet dataset.
Unlike the images in the CIFAR-10 dataset in :numref:sec_kaggle_cifar10
,
the images in the ImageNet dataset are both higher and wider in varying dimensions.
:numref:fig_kaggle_dog
shows the information on the competition's webpage. You need a Kaggle account
to submit your results.
:width:400px
:label:fig_kaggle_dog
#@tab mxnet
from d2l import mxnet as d2l
from mxnet import autograd, gluon, init, npx
from mxnet.gluon import nn
import os
npx.set_np()
#@tab pytorch
from d2l import torch as d2l
import torch
import torchvision
from torch import nn
import os
Obtaining and Organizing the Dataset⚓︎
The competition dataset is divided into a training set and a test set, which contain 10222 and 10357 JPEG images of three RGB (color) channels, respectively. Among the training dataset, there are 120 breeds of dogs such as Labradors, Poodles, Dachshunds, Samoyeds, Huskies, Chihuahuas, and Yorkshire Terriers.
Downloading the Dataset⚓︎
After logging into Kaggle,
you can click on the "Data" tab on the
competition webpage shown in :numref:fig_kaggle_dog
and download the dataset by clicking the "Download All" button.
After unzipping the downloaded file in ../data
, you will find the entire dataset in the following paths:
- ../data/dog-breed-identification/labels.csv
- ../data/dog-breed-identification/sample_submission.csv
- ../data/dog-breed-identification/train
- ../data/dog-breed-identification/test
You may have noticed that the above structure is
similar to that of the CIFAR-10 competition in :numref:sec_kaggle_cifar10
, where folders train/
and test/
contain training and testing dog images, respectively, and labels.csv
contains
the labels for the training images.
Similarly, to make it easier to get started, [we provide a small sample of the dataset] mentioned above: train_valid_test_tiny.zip
.
If you are going to use the full dataset for the Kaggle competition, you need to change the demo
variable below to False
.
#@tab all
#@save
d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip',
'0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')
# If you use the full dataset downloaded for the Kaggle competition, change
# the variable below to `False`
demo = True
if demo:
data_dir = d2l.download_extract('dog_tiny')
else:
data_dir = os.path.join('..', 'data', 'dog-breed-identification')
[Organizing the Dataset]⚓︎
We can organize the dataset similarly to what we did in :numref:sec_kaggle_cifar10
, namely splitting out
a validation set from the original training set, and moving images into subfolders grouped by labels.
The reorg_dog_data
function below reads
the training data labels, splits out the validation set, and organizes the training set.
#@tab all
def reorg_dog_data(data_dir, valid_ratio):
labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))
d2l.reorg_train_valid(data_dir, labels, valid_ratio)
d2l.reorg_test(data_dir)
batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)
[Image Augmentation]⚓︎
Recall that this dog breed dataset
is a subset of the ImageNet dataset,
whose images
are larger than those of the CIFAR-10 dataset
in :numref:sec_kaggle_cifar10
.
The following
lists a few image augmentation operations
that might be useful for relatively larger images.
#@tab mxnet
transform_train = gluon.data.vision.transforms.Compose([
# Randomly crop the image to obtain an image with an area of 0.08 to 1 of
# the original area and height-to-width ratio between 3/4 and 4/3. Then,
# scale the image to create a new 224 x 224 image
gluon.data.vision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),
ratio=(3.0/4.0, 4.0/3.0)),
gluon.data.vision.transforms.RandomFlipLeftRight(),
# Randomly change the brightness, contrast, and saturation
gluon.data.vision.transforms.RandomColorJitter(brightness=0.4,
contrast=0.4,
saturation=0.4),
# Add random noise
gluon.data.vision.transforms.RandomLighting(0.1),
gluon.data.vision.transforms.ToTensor(),
# Standardize each channel of the image
gluon.data.vision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
#@tab pytorch
transform_train = torchvision.transforms.Compose([
# Randomly crop the image to obtain an image with an area of 0.08 to 1 of
# the original area and height-to-width ratio between 3/4 and 4/3. Then,
# scale the image to create a new 224 x 224 image
torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),
ratio=(3.0/4.0, 4.0/3.0)),
torchvision.transforms.RandomHorizontalFlip(),
# Randomly change the brightness, contrast, and saturation
torchvision.transforms.ColorJitter(brightness=0.4,
contrast=0.4,
saturation=0.4),
# Add random noise
torchvision.transforms.ToTensor(),
# Standardize each channel of the image
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
During prediction, we only use image preprocessing operations without randomness.
#@tab mxnet
transform_test = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.Resize(256),
# Crop a 224 x 224 square area from the center of the image
gluon.data.vision.transforms.CenterCrop(224),
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
#@tab pytorch
transform_test = torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
# Crop a 224 x 224 square area from the center of the image
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
[Reading the Dataset]⚓︎
As in :numref:sec_kaggle_cifar10
,
we can read the organized dataset
consisting of raw image files.
#@tab mxnet
train_ds, valid_ds, train_valid_ds, test_ds = [
gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, 'train_valid_test', folder))
for folder in ('train', 'valid', 'train_valid', 'test')]
#@tab pytorch
train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder),
transform=transform_train) for folder in ['train', 'train_valid']]
valid_ds, test_ds = [torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder),
transform=transform_test) for folder in ['valid', 'test']]
Below we create data iterator instances
the same way
as in :numref:sec_kaggle_cifar10
.
#@tab mxnet
train_iter, train_valid_iter = [gluon.data.DataLoader(
dataset.transform_first(transform_train), batch_size, shuffle=True,
last_batch='discard') for dataset in (train_ds, train_valid_ds)]
valid_iter = gluon.data.DataLoader(
valid_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='discard')
test_iter = gluon.data.DataLoader(
test_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='keep')
#@tab pytorch
train_iter, train_valid_iter = [torch.utils.data.DataLoader(
dataset, batch_size, shuffle=True, drop_last=True)
for dataset in (train_ds, train_valid_ds)]
valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,
drop_last=True)
test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,
drop_last=False)
[Fine-Tuning a Pretrained Model]⚓︎
Again,
the dataset for this competition is a subset of the ImageNet dataset.
Therefore, we can use the approach discussed in
:numref:sec_fine_tuning
to select a model pretrained on the
full ImageNet dataset and use it to extract image features to be fed into a
custom small-scale output network.
High-level APIs of deep learning frameworks
provide a wide range of models
pretrained on the ImageNet dataset.
Here, we choose
a pretrained ResNet-34 model,
where we simply reuse
the input of this model's output layer
(i.e., the extracted
features).
Then we can replace the original output layer with a small custom
output network that can be trained,
such as stacking two
fully connected layers.
Different from the experiment in
:numref:sec_fine_tuning
,
the following does
not retrain the pretrained model used for feature
extraction. This reduces training time and
memory for storing gradients.
Recall that we standardized images using the means and standard deviations of the three RGB channels for the full ImageNet dataset. In fact, this is also consistent with the standardization operation by the pretrained model on ImageNet.
#@tab mxnet
def get_net(devices):
finetune_net = gluon.model_zoo.vision.resnet34_v2(pretrained=True)
# Define a new output network
finetune_net.output_new = nn.HybridSequential(prefix='')
finetune_net.output_new.add(nn.Dense(256, activation='relu'))
# There are 120 output categories
finetune_net.output_new.add(nn.Dense(120))
# Initialize the output network
finetune_net.output_new.initialize(init.Xavier(), ctx=devices)
# Distribute the model parameters to the CPUs or GPUs used for computation
finetune_net.collect_params().reset_ctx(devices)
return finetune_net
#@tab pytorch
def get_net(devices):
finetune_net = nn.Sequential()
finetune_net.features = torchvision.models.resnet34(pretrained=True)
# Define a new output network (there are 120 output categories)
finetune_net.output_new = nn.Sequential(nn.Linear(1000, 256),
nn.ReLU(),
nn.Linear(256, 120))
# Move the model to devices
finetune_net = finetune_net.to(devices[0])
# Freeze parameters of feature layers
for param in finetune_net.features.parameters():
param.requires_grad = False
return finetune_net
Before [calculating the loss], we first obtain the input of the pretrained model's output layer, i.e., the extracted feature. Then we use this feature as input for our small custom output network to calculate the loss.
#@tab mxnet
loss = gluon.loss.SoftmaxCrossEntropyLoss()
def evaluate_loss(data_iter, net, devices):
l_sum, n = 0.0, 0
for features, labels in data_iter:
X_shards, y_shards = d2l.split_batch(features, labels, devices)
output_features = [net.features(X_shard) for X_shard in X_shards]
outputs = [net.output_new(feature) for feature in output_features]
ls = [loss(output, y_shard).sum() for output, y_shard
in zip(outputs, y_shards)]
l_sum += sum([float(l.sum()) for l in ls])
n += labels.size
return l_sum / n
#@tab pytorch
loss = nn.CrossEntropyLoss(reduction='none')
def evaluate_loss(data_iter, net, devices):
l_sum, n = 0.0, 0
for features, labels in data_iter:
features, labels = features.to(devices[0]), labels.to(devices[0])
outputs = net(features)
l = loss(outputs, labels)
l_sum += l.sum()
n += labels.numel()
return l_sum / n
Defining [the Training Function]⚓︎
We will select the model and tune hyperparameters according to the model's performance on the validation set. The model training function train
only
iterates parameters of the small custom output network.
#@tab mxnet
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay):
# Only train the small custom output network
trainer = gluon.Trainer(net.output_new.collect_params(), 'sgd',
{'learning_rate': lr, 'momentum': 0.9, 'wd': wd})
num_batches, timer = len(train_iter), d2l.Timer()
legend = ['train loss']
if valid_iter is not None:
legend.append('valid loss')
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=legend)
for epoch in range(num_epochs):
metric = d2l.Accumulator(2)
if epoch > 0 and epoch % lr_period == 0:
trainer.set_learning_rate(trainer.learning_rate * lr_decay)
for i, (features, labels) in enumerate(train_iter):
timer.start()
X_shards, y_shards = d2l.split_batch(features, labels, devices)
output_features = [net.features(X_shard) for X_shard in X_shards]
with autograd.record():
outputs = [net.output_new(feature)
for feature in output_features]
ls = [loss(output, y_shard).sum() for output, y_shard
in zip(outputs, y_shards)]
for l in ls:
l.backward()
trainer.step(batch_size)
metric.add(sum([float(l.sum()) for l in ls]), labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[1], None))
if valid_iter is not None:
valid_loss = evaluate_loss(valid_iter, net, devices)
animator.add(epoch + 1, (None, valid_loss))
measures = f'train loss {metric[0] / metric[1]:.3f}'
if valid_iter is not None:
measures += f', valid loss {valid_loss:.3f}'
print(measures + f'\n{metric[1] * num_epochs / timer.sum():.1f}'
f' examples/sec on {str(devices)}')
#@tab pytorch
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay):
# Only train the small custom output network
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
trainer = torch.optim.SGD((param for param in net.parameters()
if param.requires_grad), lr=lr,
momentum=0.9, weight_decay=wd)
scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
num_batches, timer = len(train_iter), d2l.Timer()
legend = ['train loss']
if valid_iter is not None:
legend.append('valid loss')
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=legend)
for epoch in range(num_epochs):
metric = d2l.Accumulator(2)
for i, (features, labels) in enumerate(train_iter):
timer.start()
features, labels = features.to(devices[0]), labels.to(devices[0])
trainer.zero_grad()
output = net(features)
l = loss(output, labels).sum()
l.backward()
trainer.step()
metric.add(l, labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[1], None))
measures = f'train loss {metric[0] / metric[1]:.3f}'
if valid_iter is not None:
valid_loss = evaluate_loss(valid_iter, net, devices)
animator.add(epoch + 1, (None, valid_loss.detach().cpu()))
scheduler.step()
if valid_iter is not None:
measures += f', valid loss {valid_loss:.3f}'
print(measures + f'\n{metric[1] * num_epochs / timer.sum():.1f}'
f' examples/sec on {str(devices)}')
[Training and Validating the Model]⚓︎
Now we can train and validate the model.
The following hyperparameters are all tunable.
For example, the number of epochs can be increased. Because lr_period
and lr_decay
are set to 2 and 0.9, respectively, the learning rate of the optimization algorithm will be multiplied by 0.9 after every 2 epochs.
#@tab mxnet
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 5e-3, 1e-4
lr_period, lr_decay, net = 2, 0.9, get_net(devices)
net.hybridize()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay)
#@tab pytorch
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 1e-4, 1e-4
lr_period, lr_decay, net = 2, 0.9, get_net(devices)
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay)
[Classifying the Testing Set] and Submitting Results on Kaggle⚓︎
Similar to the final step in :numref:sec_kaggle_cifar10
,
in the end all the labeled data (including the validation set) are used for training the model and classifying the testing set.
We will use the trained custom output network
for classification.
#@tab mxnet
net = get_net(devices)
net.hybridize()
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
lr_decay)
preds = []
for data, label in test_iter:
output_features = net.features(data.as_in_ctx(devices[0]))
output = npx.softmax(net.output_new(output_features))
preds.extend(output.asnumpy())
ids = sorted(os.listdir(
os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')))
with open('submission.csv', 'w') as f:
f.write('id,' + ','.join(train_valid_ds.synsets) + '\n')
for i, output in zip(ids, preds):
f.write(i.split('.')[0] + ',' + ','.join(
[str(num) for num in output]) + '\n')
#@tab pytorch
net = get_net(devices)
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
lr_decay)
preds = []
for data, label in test_iter:
output = torch.nn.functional.softmax(net(data.to(devices[0])), dim=1)
preds.extend(output.cpu().detach().numpy())
ids = sorted(os.listdir(
os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')))
with open('submission.csv', 'w') as f:
f.write('id,' + ','.join(train_valid_ds.classes) + '\n')
for i, output in zip(ids, preds):
f.write(i.split('.')[0] + ',' + ','.join(
[str(num) for num in output]) + '\n')
The above code
will generate a submission.csv
file
to be submitted
to Kaggle in the same way described in :numref:sec_kaggle_house
.
Summary⚓︎
- Images in the ImageNet dataset are larger (with varying dimensions) than CIFAR-10 images. We may modify image augmentation operations for tasks on a different dataset.
- To classify a subset of the ImageNet dataset, we can leverage pre-trained models on the full ImageNet dataset to extract features and only train a custom small-scale output network. This will lead to less computational time and memory cost.
Exercises⚓︎
- When using the full Kaggle competition dataset, what results can you achieve when you increase
batch_size
(batch size) andnum_epochs
(number of epochs) while setting some other hyperparameters aslr = 0.01
,lr_period = 10
, andlr_decay = 0.1
? - Do you get better results if you use a deeper pretrained model? How do you tune hyperparameters? Can you further improve the results?
:begin_tab:mxnet
Discussions
:end_tab:
:begin_tab:pytorch
Discussions
:end_tab:
创建日期: November 25, 2023