The Dataset for Pretraining BERT⚓︎
:label:sec_bert-dataset
To pretrain the BERT model as implemented in :numref:sec_bert
,
we need to generate the dataset in the ideal format to facilitate
the two pretraining tasks:
masked language modeling and next sentence prediction.
On the one hand,
the original BERT model is pretrained on the concatenation of
two huge corpora BookCorpus and English Wikipedia (see :numref:subsec_bert_pretraining_tasks
),
making it hard to run for most readers of this book.
On the other hand,
the off-the-shelf pretrained BERT model
may not fit for applications from specific domains like medicine.
Thus, it is getting popular to pretrain BERT on a customized dataset.
To facilitate the demonstration of BERT pretraining,
we use a smaller corpus WikiText-2 :cite:Merity.Xiong.Bradbury.ea.2016
.
Comparing with the PTB dataset used for pretraining word2vec in :numref:sec_word2vec_data
,
WikiText-2 (i) retains the original punctuation, making it suitable for next sentence prediction; (ii) retains the original case and numbers; (iii) is over twice larger.
#@tab mxnet
from d2l import mxnet as d2l
from mxnet import gluon, np, npx
import os
import random
npx.set_np()
#@tab pytorch
from d2l import torch as d2l
import os
import random
import torch
In [the WikiText-2 dataset], each line represents a paragraph where space is inserted between any punctuation and its preceding token. Paragraphs with at least two sentences are retained. To split sentences, we only use the period as the delimiter for simplicity. We leave discussions of more complex sentence splitting techniques in the exercises at the end of this section.
#@tab all
#@save
d2l.DATA_HUB['wikitext-2'] = (
'https://s3.amazonaws.com/research.metamind.io/wikitext/'
'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe')
#@save
def _read_wiki(data_dir):
file_name = os.path.join(data_dir, 'wiki.train.tokens')
with open(file_name, 'r') as f:
lines = f.readlines()
# Uppercase letters are converted to lowercase ones
paragraphs = [line.strip().lower().split(' . ')
for line in lines if len(line.split(' . ')) >= 2]
random.shuffle(paragraphs)
return paragraphs
Defining Helper Functions for Pretraining Tasks⚓︎
In the following, we begin by implementing helper functions for the two BERT pretraining tasks: next sentence prediction and masked language modeling. These helper functions will be invoked later when transforming the raw text corpus into the dataset of the ideal format to pretrain BERT.
[Generating the Next Sentence Prediction Task]⚓︎
According to descriptions of :numref:subsec_nsp
,
the _get_next_sentence
function generates a training example
for the binary classification task.
#@tab all
#@save
def _get_next_sentence(sentence, next_sentence, paragraphs):
if random.random() < 0.5:
is_next = True
else:
# `paragraphs` is a list of lists of lists
next_sentence = random.choice(random.choice(paragraphs))
is_next = False
return sentence, next_sentence, is_next
The following function generates training examples for next sentence prediction
from the input paragraph
by invoking the _get_next_sentence
function.
Here paragraph
is a list of sentences, where each sentence is a list of tokens.
The argument max_len
specifies the maximum length of a BERT input sequence during pretraining.
#@tab all
#@save
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):
nsp_data_from_paragraph = []
for i in range(len(paragraph) - 1):
tokens_a, tokens_b, is_next = _get_next_sentence(
paragraph[i], paragraph[i + 1], paragraphs)
# Consider 1 '<cls>' token and 2 '<sep>' tokens
if len(tokens_a) + len(tokens_b) + 3 > max_len:
continue
tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
nsp_data_from_paragraph.append((tokens, segments, is_next))
return nsp_data_from_paragraph
[Generating the Masked Language Modeling Task]⚓︎
:label:subsec_prepare_mlm_data
In order to generate training examples
for the masked language modeling task
from a BERT input sequence,
we define the following _replace_mlm_tokens
function.
In its inputs, tokens
is a list of tokens representing a BERT input sequence,
candidate_pred_positions
is a list of token indices of the BERT input sequence
excluding those of special tokens (special tokens are not predicted in the masked language modeling task),
and num_mlm_preds
indicates the number of predictions (recall 15% random tokens to predict).
Following the definition of the masked language modeling task in :numref:subsec_mlm
,
at each prediction position, the input may be replaced by
a special “<mask>” token or a random token, or remain unchanged.
In the end, the function returns the input tokens after possible replacement,
the token indices where predictions take place and labels for these predictions.
#@tab all
#@save
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds,
vocab):
# For the input of a masked language model, make a new copy of tokens and
# replace some of them by '<mask>' or random tokens
mlm_input_tokens = [token for token in tokens]
pred_positions_and_labels = []
# Shuffle for getting 15% random tokens for prediction in the masked
# language modeling task
random.shuffle(candidate_pred_positions)
for mlm_pred_position in candidate_pred_positions:
if len(pred_positions_and_labels) >= num_mlm_preds:
break
masked_token = None
# 80% of the time: replace the word with the '<mask>' token
if random.random() < 0.8:
masked_token = '<mask>'
else:
# 10% of the time: keep the word unchanged
if random.random() < 0.5:
masked_token = tokens[mlm_pred_position]
# 10% of the time: replace the word with a random word
else:
masked_token = random.choice(vocab.idx_to_token)
mlm_input_tokens[mlm_pred_position] = masked_token
pred_positions_and_labels.append(
(mlm_pred_position, tokens[mlm_pred_position]))
return mlm_input_tokens, pred_positions_and_labels
By invoking the aforementioned _replace_mlm_tokens
function,
the following function takes a BERT input sequence (tokens
)
as an input and returns indices of the input tokens
(after possible token replacement as described in :numref:subsec_mlm
),
the token indices where predictions take place,
and label indices for these predictions.
#@tab all
#@save
def _get_mlm_data_from_tokens(tokens, vocab):
candidate_pred_positions = []
# `tokens` is a list of strings
for i, token in enumerate(tokens):
# Special tokens are not predicted in the masked language modeling
# task
if token in ['<cls>', '<sep>']:
continue
candidate_pred_positions.append(i)
# 15% of random tokens are predicted in the masked language modeling task
num_mlm_preds = max(1, round(len(tokens) * 0.15))
mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens(
tokens, candidate_pred_positions, num_mlm_preds, vocab)
pred_positions_and_labels = sorted(pred_positions_and_labels,
key=lambda x: x[0])
pred_positions = [v[0] for v in pred_positions_and_labels]
mlm_pred_labels = [v[1] for v in pred_positions_and_labels]
return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]
Transforming Text into the Pretraining Dataset⚓︎
Now we are almost ready to customize a Dataset
class for pretraining BERT.
Before that,
we still need to define a helper function _pad_bert_inputs
to [append the special “<pad>” tokens to the inputs.]
Its argument examples
contain the outputs from the helper functions _get_nsp_data_from_paragraph
and _get_mlm_data_from_tokens
for the two pretraining tasks.
#@tab mxnet
#@save
def _pad_bert_inputs(examples, max_len, vocab):
max_num_mlm_preds = round(max_len * 0.15)
all_token_ids, all_segments, valid_lens, = [], [], []
all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []
nsp_labels = []
for (token_ids, pred_positions, mlm_pred_label_ids, segments,
is_next) in examples:
all_token_ids.append(np.array(token_ids + [vocab['<pad>']] * (
max_len - len(token_ids)), dtype='int32'))
all_segments.append(np.array(segments + [0] * (
max_len - len(segments)), dtype='int32'))
# `valid_lens` excludes count of '<pad>' tokens
valid_lens.append(np.array(len(token_ids), dtype='float32'))
all_pred_positions.append(np.array(pred_positions + [0] * (
max_num_mlm_preds - len(pred_positions)), dtype='int32'))
# Predictions of padded tokens will be filtered out in the loss via
# multiplication of 0 weights
all_mlm_weights.append(
np.array([1.0] * len(mlm_pred_label_ids) + [0.0] * (
max_num_mlm_preds - len(pred_positions)), dtype='float32'))
all_mlm_labels.append(np.array(mlm_pred_label_ids + [0] * (
max_num_mlm_preds - len(mlm_pred_label_ids)), dtype='int32'))
nsp_labels.append(np.array(is_next))
return (all_token_ids, all_segments, valid_lens, all_pred_positions,
all_mlm_weights, all_mlm_labels, nsp_labels)
#@tab pytorch
#@save
def _pad_bert_inputs(examples, max_len, vocab):
max_num_mlm_preds = round(max_len * 0.15)
all_token_ids, all_segments, valid_lens, = [], [], []
all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []
nsp_labels = []
for (token_ids, pred_positions, mlm_pred_label_ids, segments,
is_next) in examples:
all_token_ids.append(torch.tensor(token_ids + [vocab['<pad>']] * (
max_len - len(token_ids)), dtype=torch.long))
all_segments.append(torch.tensor(segments + [0] * (
max_len - len(segments)), dtype=torch.long))
# `valid_lens` excludes count of '<pad>' tokens
valid_lens.append(torch.tensor(len(token_ids), dtype=torch.float32))
all_pred_positions.append(torch.tensor(pred_positions + [0] * (
max_num_mlm_preds - len(pred_positions)), dtype=torch.long))
# Predictions of padded tokens will be filtered out in the loss via
# multiplication of 0 weights
all_mlm_weights.append(
torch.tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * (
max_num_mlm_preds - len(pred_positions)),
dtype=torch.float32))
all_mlm_labels.append(torch.tensor(mlm_pred_label_ids + [0] * (
max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=torch.long))
nsp_labels.append(torch.tensor(is_next, dtype=torch.long))
return (all_token_ids, all_segments, valid_lens, all_pred_positions,
all_mlm_weights, all_mlm_labels, nsp_labels)
Putting the helper functions for
generating training examples of the two pretraining tasks,
and the helper function for padding inputs together,
we customize the following _WikiTextDataset
class as [the WikiText-2 dataset for pretraining BERT].
By implementing the __getitem__
function,
we can arbitrarily access the pretraining (masked language modeling and next sentence prediction) examples
generated from a pair of sentences from the WikiText-2 corpus.
The original BERT model uses WordPiece embeddings whose vocabulary size is 30000 :cite:Wu.Schuster.Chen.ea.2016
.
The tokenization method of WordPiece is a slight modification of
the original byte pair encoding algorithm in :numref:subsec_Byte_Pair_Encoding
.
For simplicity, we use the d2l.tokenize
function for tokenization.
Infrequent tokens that appear less than five times are filtered out.
#@tab mxnet
#@save
class _WikiTextDataset(gluon.data.Dataset):
def __init__(self, paragraphs, max_len):
# Input `paragraphs[i]` is a list of sentence strings representing a
# paragraph; while output `paragraphs[i]` is a list of sentences
# representing a paragraph, where each sentence is a list of tokens
paragraphs = [d2l.tokenize(
paragraph, token='word') for paragraph in paragraphs]
sentences = [sentence for paragraph in paragraphs
for sentence in paragraph]
self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[
'<pad>', '<mask>', '<cls>', '<sep>'])
# Get data for the next sentence prediction task
examples = []
for paragraph in paragraphs:
examples.extend(_get_nsp_data_from_paragraph(
paragraph, paragraphs, self.vocab, max_len))
# Get data for the masked language model task
examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)
+ (segments, is_next))
for tokens, segments, is_next in examples]
# Pad inputs
(self.all_token_ids, self.all_segments, self.valid_lens,
self.all_pred_positions, self.all_mlm_weights,
self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(
examples, max_len, self.vocab)
def __getitem__(self, idx):
return (self.all_token_ids[idx], self.all_segments[idx],
self.valid_lens[idx], self.all_pred_positions[idx],
self.all_mlm_weights[idx], self.all_mlm_labels[idx],
self.nsp_labels[idx])
def __len__(self):
return len(self.all_token_ids)
#@tab pytorch
#@save
class _WikiTextDataset(torch.utils.data.Dataset):
def __init__(self, paragraphs, max_len):
# Input `paragraphs[i]` is a list of sentence strings representing a
# paragraph; while output `paragraphs[i]` is a list of sentences
# representing a paragraph, where each sentence is a list of tokens
paragraphs = [d2l.tokenize(
paragraph, token='word') for paragraph in paragraphs]
sentences = [sentence for paragraph in paragraphs
for sentence in paragraph]
self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[
'<pad>', '<mask>', '<cls>', '<sep>'])
# Get data for the next sentence prediction task
examples = []
for paragraph in paragraphs:
examples.extend(_get_nsp_data_from_paragraph(
paragraph, paragraphs, self.vocab, max_len))
# Get data for the masked language model task
examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)
+ (segments, is_next))
for tokens, segments, is_next in examples]
# Pad inputs
(self.all_token_ids, self.all_segments, self.valid_lens,
self.all_pred_positions, self.all_mlm_weights,
self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(
examples, max_len, self.vocab)
def __getitem__(self, idx):
return (self.all_token_ids[idx], self.all_segments[idx],
self.valid_lens[idx], self.all_pred_positions[idx],
self.all_mlm_weights[idx], self.all_mlm_labels[idx],
self.nsp_labels[idx])
def __len__(self):
return len(self.all_token_ids)
By using the _read_wiki
function and the _WikiTextDataset
class,
we define the following load_data_wiki
to [download and WikiText-2 dataset
and generate pretraining examples] from it.
#@tab mxnet
#@save
def load_data_wiki(batch_size, max_len):
"""Load the WikiText-2 dataset."""
num_workers = d2l.get_dataloader_workers()
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
paragraphs = _read_wiki(data_dir)
train_set = _WikiTextDataset(paragraphs, max_len)
train_iter = gluon.data.DataLoader(train_set, batch_size, shuffle=True,
num_workers=num_workers)
return train_iter, train_set.vocab
#@tab pytorch
#@save
def load_data_wiki(batch_size, max_len):
"""Load the WikiText-2 dataset."""
num_workers = d2l.get_dataloader_workers()
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
paragraphs = _read_wiki(data_dir)
train_set = _WikiTextDataset(paragraphs, max_len)
train_iter = torch.utils.data.DataLoader(train_set, batch_size,
shuffle=True, num_workers=num_workers)
return train_iter, train_set.vocab
Setting the batch size to 512 and the maximum length of a BERT input sequence to be 64, we [print out the shapes of a minibatch of BERT pretraining examples]. Note that in each BERT input sequence, \(10\) (\(64 \times 0.15\)) positions are predicted for the masked language modeling task.
#@tab all
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)
for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X,
mlm_Y, nsp_y) in train_iter:
print(tokens_X.shape, segments_X.shape, valid_lens_x.shape,
pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape,
nsp_y.shape)
break
In the end, let's take a look at the vocabulary size. Even after filtering out infrequent tokens, it is still over twice larger than that of the PTB dataset.
#@tab all
len(vocab)
Summary⚓︎
- Comparing with the PTB dataset, the WikiText-2 dateset retains the original punctuation, case and numbers, and is over twice larger.
- We can arbitrarily access the pretraining (masked language modeling and next sentence prediction) examples generated from a pair of sentences from the WikiText-2 corpus.
Exercises⚓︎
- For simplicity, the period is used as the only delimiter for splitting sentences. Try other sentence splitting techniques, such as the spaCy and NLTK. Take NLTK as an example. You need to install NLTK first:
pip install nltk
. In the code, firstimport nltk
. Then, download the Punkt sentence tokenizer:nltk.download('punkt')
. To split sentences such assentences = 'This is great ! Why not ?'
, invokingnltk.tokenize.sent_tokenize(sentences)
will return a list of two sentence strings:['This is great !', 'Why not ?']
. - What is the vocabulary size if we do not filter out any infrequent token?
:begin_tab:mxnet
Discussions
:end_tab:
:begin_tab:pytorch
Discussions
:end_tab:
创建日期: November 25, 2023