教程3:使用预训练模型推理⚓︎
MMagic 提供了高级API,让您可以轻松地在自己的图像或视频上使用最先进的模型进行操作。 在新的API中,仅需两行代码即可进行推理。
from mmagic.apis import MMagicInferencer
# 创建MMagicInferencer实例
editor = MMagicInferencer('pix2pix')
# 推理图片.需要输入图片路径与输出图片路径
results = editor.infer(img='../resources/input/translation/gt_mask_0.png', result_out_dir='../resources/output/translation/tutorial_translation_pix2pix_res.jpg')
MMagic支持各种基础生成模型,包括无条件生成对抗网络(GANs)、条件GANs、扩散模型等。 MMagic 同样支持多种应用,包括:文生图、图生图的转换、3D感知生成、图像超分、视频超分、视频帧插值、图像修补、图像抠图、图像恢复、图像上色、图像生成等。 在本节中,我们将详细说明如何使用我们预训练的模型进行操作。
- 教程3: 使用预训练模型推理
- 准备一些图片或者视频用于推理
- 生成模型
- 应用
- 以前的版本
准备一些图片或者视频用于推理⚓︎
请参考我们的教程获取详细信息。
生成模型⚓︎
无条件生成对抗网络(GANs)⚓︎
MMagic提供了用于使用无条件GANs进行图像采样的高级API。无条件GAN模型不需要输入,并输出一张图像。我们以'styleganv1'为例。
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
# 创建MMagicInferencer实例,并进行推理
result_out_dir = './resources/output/unconditional/tutorial_unconditional_styleganv1_res.png'
editor = MMagicInferencer('styleganv1')
results = editor.infer(result_out_dir=result_out_dir)
确实,我们已经为用户提供了一个更友好的演示脚本。您可以使用以下命令使用demo/mmagic_inference_demo.py:
python demo/mmagic_inference_demo.py \
--model-name styleganv1 \
--result-out-dir demo_unconditional_styleganv1_res.jpg
条件生成对抗网络(GANs)⚓︎
MMagic提供了使用条件GAN进行图像采样的高级API。条件GAN模型接受一个标签作为输入,并输出一张图像。我们以'biggan'为例。
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
# 创建MMagicInferencer实例,并进行推理
result_out_dir = './resources/output/conditional/tutorial_conditinal_biggan_res.jpg'
editor = MMagicInferencer('biggan', model_setting=1)
results = editor.infer(label=1, result_out_dir=result_out_dir)
我们已经为用户提供了一个更友好的演示脚本。您可以使用以下命令使用demo/mmagic_inference_demo.py:
python demo/mmagic_inference_demo.py \
--model-name biggan \
--model-setting 1 \
--label 1 \
--result-out-dir demo_conditional_biggan_res.jpg
扩散模型⚓︎
MMagic提供了使用扩散模型进行图像采样的高级API。
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
# 创建MMagicInferencer实例,并进行推理
editor = MMagicInferencer(model_name='stable_diffusion')
text_prompts = 'A panda is having dinner at KFC'
result_out_dir = './resources/output/text2image/tutorial_text2image_sd_res.png'
editor.infer(text=text_prompts, result_out_dir=result_out_dir)
通过以下命令使用demo/mmagic_inference_demo.py
python demo/mmagic_inference_demo.py \
--model-name stable_diffusion \
--text "A panda is having dinner at KFC" \
--result-out-dir demo_text2image_stable_diffusion_res.png
应用⚓︎
文生图⚓︎
文生图模型将文本作为输入,输出一张图片。我们以'controlnet-canny'为例。
import cv2
import numpy as np
import mmcv
from mmengine import Config
from PIL import Image
from mmagic.registry import MODELS
from mmagic.utils import register_all_modules
register_all_modules()
cfg = Config.fromfile('configs/controlnet/controlnet-canny.py')
controlnet = MODELS.build(cfg.model).cuda()
control_url = 'https://user-images.githubusercontent.com/28132635/230288866-99603172-04cb-47b3-8adb-d1aa532d1d2c.jpg'
control_img = mmcv.imread(control_url)
control = cv2.Canny(control_img, 100, 200)
control = control[:, :, None]
control = np.concatenate([control] * 3, axis=2)
control = Image.fromarray(control)
prompt = 'Room with blue walls and a yellow ceiling.'
output_dict = controlnet.infer(prompt, control=control)
samples = output_dict['samples']
通过以下命令使用demo/mmagic_inference_demo.py
python demo/mmagic_inference_demo.py \
--model-name controlnet \
--model-setting 1 \
--text "Room with blue walls and a yellow ceiling." \
--control 'https://user-images.githubusercontent.com/28132635/230297033-4f5c32df-365c-4cf4-8e4f-1b76a4cbb0b7.png' \
--result-out-dir demo_text2image_controlnet_canny_res.png
图生图的转换⚓︎
MMagic提供了使用图像翻译模型进行图像翻译的高级API。下面是构建Pix2Pix并获取翻译图像的示例。
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
# Create a MMagicInferencer instance and infer
editor = MMagicInferencer('pix2pix')
results = editor.infer(img=img_path, result_out_dir=result_out_dir)
通过以下命令使用demo/mmagic_inference_demo.py
python demo/mmagic_inference_demo.py \
--model-name pix2pix \
--img ${IMAGE_PATH} \
--result-out-dir ${SAVE_PATH}
3D感知生成⚓︎
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
# Create a MMagicInferencer instance and infer
result_out_dir = './resources/output/eg3d-output'
editor = MMagicInferencer('eg3d')
results = editor.infer(result_out_dir=result_out_dir)
通过以下命令使用demo/mmagic_inference_demo.py
python demo/mmagic_inference_demo.py \
--model-name eg3d \
--result-out-dir ./resources/output/eg3d-output
图像超分⚓︎
图像超分辨率模型接受一张图像作为输入,并输出一张高分辨率图像。我们以 'esrgan' 为例。
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
# Create a MMagicInferencer instance and infer
img = './resources/input/restoration/0901x2.png'
result_out_dir = './resources/output/restoration/tutorial_restoration_esrgan_res.png'
editor = MMagicInferencer('esrgan')
results = editor.infer(img=img, result_out_dir=result_out_dir)
通过以下命令使用demo/mmagic_inference_demo.py
python demo/mmagic_inference_demo.py \
--model-name esrgan \
--img ${IMAGE_PATH} \
--result-out-dir ${SAVE_PATH}
视频超分⚓︎
import os
from mmagic.apis import MMagicInferencer
from mmengine import mkdir_or_exist
# Create a MMagicInferencer instance and infer
video = './resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4'
result_out_dir = './resources/output/video_super_resolution/tutorial_video_super_resolution_basicvsr_res.mp4'
mkdir_or_exist(os.path.dirname(result_out_dir))
editor = MMagicInferencer('basicvsr')
results = editor.infer(video=video, result_out_dir=result_out_dir)
通过以下命令使用demo/mmagic_inference_demo.py
python demo/mmagic_inference_demo.py \
--model-name basicvsr \
--video ./resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4 \
--result-out-dir ./resources/output/video_restoration/demo_video_restoration_basicvsr_res.mp4
视频帧插值⚓︎
视频插值模型接受一个视频作为输入,并输出一个插值后的视频。我们以 'flavr' 为例。
import os
from mmagic.apis import MMagicInferencer
from mmengine import mkdir_or_exist
# Create a MMagicInferencer instance and infer
video = './resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4'
result_out_dir = './resources/output/video_interpolation/tutorial_video_interpolation_flavr_res.mp4'
mkdir_or_exist(os.path.dirname(result_out_dir))
editor = MMagicInferencer('flavr')
results = editor.infer(video=video, result_out_dir=result_out_dir)
图像修补⚓︎
修复模型接受一对屏蔽图像和屏蔽蒙版作为输入,并输出一个修复后的图像。我们以 'global_local' 为例。
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
img = './resources/input/matting/GT05.jpg'
trimap = './resources/input/matting/GT05_trimap.jpg'
# 创建MMagicInferencer实例,并进行推理
result_out_dir = './resources/output/matting/tutorial_matting_gca_res.png'
editor = MMagicInferencer('gca')
results = editor.infer(img=img, trimap=trimap, result_out_dir=result_out_dir)
图像抠图⚓︎
抠图模型接受一对图像和修剪映射作为输入,并输出一个 alpha 图像。我们以 'gca' 为例。
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
img = './resources/input/matting/GT05.jpg'
trimap = './resources/input/matting/GT05_trimap.jpg'
# 创建MMagicInferencer实例,并进行推理
result_out_dir = './resources/output/matting/tutorial_matting_gca_res.png'
editor = MMagicInferencer('gca')
results = editor.infer(img=img, trimap=trimap, result_out_dir=result_out_dir)
通过以下命令使用demo/mmagic_inference_demo.py
python demo/mmagic_inference_demo.py \
--model-name gca \
--img ./resources/input/matting/GT05.jpg \
--trimap ./resources/input/matting/GT05_trimap.jpg \
--result-out-dir ./resources/output/matting/demo_matting_gca_res.png
图像恢复⚓︎
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
# Create a MMagicInferencer instance and infer
img = './resources/input/restoration/0901x2.png'
result_out_dir = './resources/output/restoration/tutorial_restoration_nafnet_res.png'
editor = MMagicInferencer('nafnet')
results = editor.infer(img=img, result_out_dir=result_out_dir)
通过以下命令使用demo/mmagic_inference_demo.py
python demo/mmagic_inference_demo.py \
--model-name nafnet \
--img ./resources/input/restoration/0901x2.png \
--result-out-dir ./resources/output/restoration/demo_restoration_nafnet_res.png
图像上色⚓︎
import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer
# Create a MMagicInferencer instance and infer
img = 'https://github-production-user-asset-6210df.s3.amazonaws.com/49083766/245713512-de973677-2be8-4915-911f-fab90bb17c40.jpg'
result_out_dir = './resources/output/colorization/tutorial_colorization_res.png'
editor = MMagicInferencer('inst_colorization')
results = editor.infer(img=img, result_out_dir=result_out_dir)
通过以下命令使用demo/mmagic_inference_demo.py
python demo/mmagic_inference_demo.py \
--model-name inst_colorization \
--img https://github-production-user-asset-6210df.s3.amazonaws.com/49083766/245713512-de973677-2be8-4915-911f-fab90bb17c40.jpg \
--result-out-dir demo_colorization_res.png
以前的版本⚓︎
如果您想使用已弃用的演示,请使用MMagic v1.0.0rc7并参考旧教程。
创建日期: November 27, 2023