将单阶段检测器作为 RPN⚓︎
候选区域网络 (Region Proposal Network, RPN) 作为 Faster R-CNN 的一个子模块,将为 Faster R-CNN 的第二阶段产生候选区域。在 MMDetection 里大多数的二阶段检测器使用 RPNHead
作为候选区域网络来产生候选区域。然而,任何的单阶段检测器都可以作为候选区域网络,是因为他们对边界框的预测可以被视为是一种候选区域,并且因此能够在 R-CNN 中得到改进。因此在 MMDetection v3.0 中会支持将单阶段检测器作为 RPN 使用。
接下来我们通过一个例子,即如何在 Faster R-CNN 中使用一个无锚框的单阶段的检测器模型 FCOS 作为 RPN ,详细阐述具体的全部流程。
主要流程如下:
- 在 Faster R-CNN 中使用
FCOSHead
作为RPNHead
- 评估候选区域
- 用预先训练的 FCOS 训练定制的 Faster R-CNN
在 Faster R-CNN 中使用 FCOSHead
作为RPNHead
⚓︎
为了在 Faster R-CNN 中使用 FCOSHead
作为 RPNHead
,我们应该创建一个名为 configs/faster_rcnn/faster-rcnn_r50_fpn_fcos-rpn_1x_coco.py
的配置文件,并且在 configs/faster_rcnn/faster-rcnn_r50_fpn_fcos-rpn_1x_coco.py
中将 rpn_head
的设置替换为 bbox_head
的设置,此外我们仍然使用 FCOS 的瓶颈设置,步幅为[8,16,32,64,128]
,并且更新 bbox_roi_extractor
的 featmap_stride
为 [8,16,32,64,128]
。为了避免损失变慢,我们在前1000次迭代而不是前500次迭代中应用预热,这意味着 lr 增长得更慢。相关配置如下:
_base_ = [
'../_base_/models/faster-rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
# 从 configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py 复制
neck=dict(
start_level=1,
add_extra_convs='on_output', # 使用 P5
relu_before_extra_convs=True),
rpn_head=dict(
_delete_=True, # 忽略未使用的旧设置
type='FCOSHead',
num_classes=1, # 对于 rpn, num_classes = 1,如果 num_classes > 1,它将在 TwoStageDetector 中自动设置为1
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='IoULoss', loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
roi_head=dict( # featmap_strides 的更新取决于于颈部的步伐
bbox_roi_extractor=dict(featmap_strides=[8, 16, 32, 64, 128])))
# 学习率
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
end=1000), # 慢慢增加 lr,否则损失变成 NAN
dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)
]
然后,我们可以使用下面的命令来训练我们的定制模型。更多训练命令,请参考这里。
# 使用8个 GPU 进行训练
bash
tools/dist_train.sh
configs/faster_rcnn/faster-rcnn_r50_fpn_fcos-rpn_1x_coco.py
--work-dir /work_dirs/faster-rcnn_r50_fpn_fcos-rpn_1x_coco
评估候选区域⚓︎
候选区域的质量对检测器的性能有重要影响,因此,我们也提供了一种评估候选区域的方法。和上面一样创建一个新的名为 configs/rpn/fcos-rpn_r50_fpn_1x_coco.py
的配置文件,并且在 configs/rpn/fcos-rpn_r50_fpn_1x_coco.py
中将 rpn_head
的设置替换为 bbox_head
的设置。
_base_ = [
'../_base_/models/rpn_r50_fpn.py', '../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
val_evaluator = dict(metric='proposal_fast')
test_evaluator = val_evaluator
model = dict(
# 从 configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py 复制
neck=dict(
start_level=1,
add_extra_convs='on_output', # 使用 P5
relu_before_extra_convs=True),
rpn_head=dict(
_delete_=True, # 忽略未使用的旧设置
type='FCOSHead',
num_classes=1, # 对于 rpn, num_classes = 1,如果 num_classes >为1,它将在 rpn 中自动设置为1
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='IoULoss', loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)))
假设我们在训练之后有检查点 ./work_dirs/faster-rcnn_r50_fpn_fcos-rpn_1x_coco/epoch_12.pth
,然后,我们可以使用下面的命令来评估建议的质量。
# 使用8个 GPU 进行测试
bash
tools/dist_test.sh
configs/rpn/fcos-rpn_r50_fpn_1x_coco.py
--work_dirs /faster-rcnn_r50_fpn_fcos-rpn_1x_coco/epoch_12.pth
用预先训练的 FCOS 训练定制的 Faster R-CNN⚓︎
预训练不仅加快了训练的收敛速度,而且提高了检测器的性能。因此,我们在这里给出一个例子来说明如何使用预先训练的 FCOS 作为 RPN 来加速训练和提高精度。假设我们想在 Faster R-CNN 中使用 FCOSHead
作为 rpn_head
,并加载预先训练权重来进行训练 fcos_r50-caffe_fpn_gn-head_1x_coco
。 配置文件 configs/faster_rcnn/faster-rcnn_r50-caffe_fpn_fcos- rpn_1x_copy .py
的内容如下所示。注意,fcos_r50-caffe_fpn_gn-head_1x_coco
使用 ResNet50 的 caffe 版本,因此需要更新 data_preprocessor
中的像素平均值和 std。
_base_ = [
'../_base_/models/faster-rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
data_preprocessor=dict(
mean=[103.530, 116.280, 123.675],
std=[1.0, 1.0, 1.0],
bgr_to_rgb=False),
backbone=dict(
norm_cfg=dict(type='BN', requires_grad=False),
style='caffe',
init_cfg=None), # the checkpoint in ``load_from`` contains the weights of backbone
neck=dict(
start_level=1,
add_extra_convs='on_output', # 使用 P5
relu_before_extra_convs=True),
rpn_head=dict(
_delete_=True, # 忽略未使用的旧设置
type='FCOSHead',
num_classes=1, # 对于 rpn, num_classes = 1,如果 num_classes > 1,它将在 TwoStageDetector 中自动设置为1
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='IoULoss', loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
roi_head=dict( # update featmap_strides due to the strides in neck
bbox_roi_extractor=dict(featmap_strides=[8, 16, 32, 64, 128])))
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/fcos_r50_caffe_fpn_gn-head_1x_coco-821213aa.pth'
训练命令如下。
bash
tools/dist_train.sh
configs/faster_rcnn/faster-rcnn_r50-caffe_fpn_fcos-rpn_1x_coco.py \
--work-dir /work_dirs/faster-rcnn_r50-caffe_fpn_fcos-rpn_1x_coco
创建日期: November 27, 2023