2.1 张量⚓︎
从本章开始,我们将开始介绍PyTorch基础知识,本章我们将介绍张量,以帮助大家建立起对数据的描述,随后我们再介绍张量的运算,最后再讲PyTorch中所有神经网络的核心包 autograd
,也就是自动微分,了解完这些内容我们就可以较好地理解PyTorch代码了。在深度学习中,我们通常将数据以张量的形式进行表示,比如我们用三维张量表示一个RGB图像,四维张量表示视频。
经过本节的学习,你将收获:
- 张量的简介
- PyTorch如何创建张量
- PyTorch中张量的操作
- PyTorch中张量的广播机制
2.1.1 简介⚓︎
几何代数中定义的张量是基于向量和矩阵的推广,比如我们可以将标量视为零阶张量,矢量可以视为一阶张量,矩阵就是二阶张量。 |张量维度|代表含义| |---|---| | 0维张量 | 代表的是标量(数字) | | 1维张量 | 代表的是向量| | 2维张量 |代表的是矩阵| |3维张量 |时间序列数据 股价 文本数据 单张彩色图片(RGB)|
张量是现代机器学习的基础。它的核心是一个数据容器,多数情况下,它包含数字,有时候它也包含字符串,但这种情况比较少。因此可以把它想象成一个数字的水桶。
这里有一些存储在各种类型张量的公用数据集类型:
- 3维 = 时间序列
- 4维 = 图像
- 5维 = 视频
例子:一个图像可以用三个字段表示:
(width, height, channel) = 3D
但是,在机器学习工作中,我们经常要处理不止一张图片或一篇文档——我们要处理一个集合。我们可能有10,000张郁金香的图片,这意味着,我们将用到4D张量:
(batch_size, width, height, channel) = 4D
在PyTorch中, torch.Tensor
是存储和变换数据的主要工具。如果你之前用过NumPy
,你会发现 Tensor
和NumPy的多维数组非常类似。然而,Tensor
提供GPU计算和自动求梯度等更多功能,这些使 Tensor
这一数据类型更加适合深度学习。
2.1.2 创建tensor⚓︎
在接下来的内容中,我们将介绍几种常见的创建tensor
的方法。
- 随机初始化矩阵
我们可以通过
torch.rand()
的方法,构造一个随机初始化的矩阵:
import torch
x = torch.rand(4, 3)
print(x)
tensor([[0.7569, 0.4281, 0.4722],
[0.9513, 0.5168, 0.1659],
[0.4493, 0.2846, 0.4363],
[0.5043, 0.9637, 0.1469]])
torch.zeros()
构造一个矩阵全为 0,并且通过dtype
设置数据类型为 long。除此以外,我们还可以通过torch.zero_()和torch.zeros_like()将现有矩阵转换为全0矩阵.
import torch
x = torch.zeros(4, 3, dtype=torch.long)
print(x)
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
torch.tensor()
直接使用数据,构造一个张量:
import torch
x = torch.tensor([5.5, 3])
print(x)
tensor([5.5000, 3.0000])
x = x.new_ones(4, 3, dtype=torch.double)
# 创建一个新的全1矩阵tensor,返回的tensor默认具有相同的torch.dtype和torch.device
# 也可以像之前的写法 x = torch.ones(4, 3, dtype=torch.double)
print(x)
x = torch.randn_like(x, dtype=torch.float)
# 重置数据类型
print(x)
# 结果会有一样的size
# 获取它的维度信息
print(x.size())
print(x.shape)
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
tensor([[ 2.7311, -0.0720, 0.2497],
[-2.3141, 0.0666, -0.5934],
[ 1.5253, 1.0336, 1.3859],
[ 1.3806, -0.6965, -1.2255]])
torch.Size([4, 3])
torch.Size([4, 3])
- 常见的构造Tensor的方法:
函数 | 功能 |
---|---|
Tensor(sizes) | 基础构造函数 |
tensor(data) | 类似于np.array |
ones(sizes) | 全1 |
zeros(sizes) | 全0 |
eye(sizes) | 对角为1,其余为0 |
arange(s,e,step) | 从s到e,步长为step |
linspace(s,e,steps) | 从s到e,均匀分成step份 |
rand/randn(sizes) | rand是[0,1)均匀分布;randn是服从N(0,1)的正态分布 |
normal(mean,std) | 正态分布(均值为mean,标准差是std) |
randperm(m) | 随机排列 |
2.1.3 张量的操作⚓︎
在接下来的内容中,我们将介绍几种常见的张量的操作方法: 1. 加法操作:
import torch
# 方式1
y = torch.rand(4, 3)
print(x + y)
# 方式2
print(torch.add(x, y))
# 方式3 in-place,原值修改
y.add_(x)
print(y)
tensor([[ 2.8977, 0.6581, 0.5856],
[-1.3604, 0.1656, -0.0823],
[ 2.1387, 1.7959, 1.5275],
[ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977, 0.6581, 0.5856],
[-1.3604, 0.1656, -0.0823],
[ 2.1387, 1.7959, 1.5275],
[ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977, 0.6581, 0.5856],
[-1.3604, 0.1656, -0.0823],
[ 2.1387, 1.7959, 1.5275],
[ 2.2427, -0.3100, -0.4826]])
需要注意的是:索引出来的结果与原数据共享内存,修改一个,另一个会跟着修改。如果不想修改,可以考虑使用copy()等方法
import torch
x = torch.rand(4,3)
# 取第二列
print(x[:, 1])
tensor([-0.0720, 0.0666, 1.0336, -0.6965])
y = x[0,:]
y += 1
print(y)
print(x[0, :]) # 源tensor也被改了了
tensor([3.7311, 0.9280, 1.2497])
tensor([3.7311, 0.9280, 1.2497])
torch.view()
和torch.reshape()
,下面我们将介绍第一中方法torch.view()
:
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # -1是指这一维的维数由其他维度决定
print(x.size(), y.size(), z.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
torch.view()
返回的新tensor
与源tensor
共享内存(其实是同一个tensor
),更改其中的一个,另外一个也会跟着改变。(顾名思义,view()仅仅是改变了对这个张量的观察角度)
x += 1
print(x)
print(y) # 也加了了1
tensor([[ 1.3019, 0.3762, 1.2397, 1.3998],
[ 0.6891, 1.3651, 1.1891, -0.6744],
[ 0.3490, 1.8377, 1.6456, 0.8403],
[-0.8259, 2.5454, 1.2474, 0.7884]])
tensor([ 1.3019, 0.3762, 1.2397, 1.3998, 0.6891, 1.3651, 1.1891, -0.6744,
0.3490, 1.8377, 1.6456, 0.8403, -0.8259, 2.5454, 1.2474, 0.7884])
torch.reshape()
, 同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用。推荐的方法是我们先用 clone()
创造一个张量副本然后再使用 torch.view()
进行函数维度变换 。
注:使用 clone()
还有一个好处是会被记录在计算图中,即梯度回传到副本时也会传到源 Tensor 。
3. 取值操作
如果我们有一个元素 tensor
,我们可以使用 .item()
来获得这个 value
,而不获得其他性质:
import torch
x = torch.randn(1)
print(type(x))
print(type(x.item()))
<class 'torch.Tensor'>
<class 'float'>
2.1.4 广播机制⚓︎
当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。
x = torch.arange(1, 3).view(1, 2)
print(x)
y = torch.arange(1, 4).view(3, 1)
print(y)
print(x + y)
tensor([[1, 2]])
tensor([[1],
[2],
[3]])
tensor([[2, 3],
[3, 4],
[4, 5]])
由于x和y分别是1行2列和3行1列的矩阵,如果要计算x+y,那么x中第一行的2个元素被广播 (复制)到了第二行和第三行,⽽y中第⼀列的3个元素被广播(复制)到了第二列。如此,就可以对2个3行2列的矩阵按元素相加。
创建日期: November 30, 2023