3.6 损失函数⚓︎
在深度学习广为使用的今天,我们可以在脑海里清晰的知道,一个模型想要达到很好的效果需要学习,也就是我们常说的训练。一个好的训练离不开优质的负反馈,这里的损失函数就是模型的负反馈。
所以在PyTorch中,损失函数是必不可少的。它是数据输入到模型当中,产生的结果与真实标签的评价指标,我们的模型可以按照损失函数的目标来做出改进。
下面我们将开始探索PyTorch的所拥有的损失函数。这里将列出PyTorch中常用的损失函数(一般通过torch.nn调用),并详细介绍每个损失函数的功能介绍、数学公式和调用代码。当然,PyTorch的损失函数还远不止这些,在解决实际问题的过程中需要进一步探索、借鉴现有工作,或者设计自己的损失函数。
经过本节的学习,你将收获:
- 在深度学习中常见的损失函数及其定义方式
- PyTorch中损失函数的调用
3.5.1 二分类交叉熵损失函数⚓︎
torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean')
功能:计算二分类任务时的交叉熵(Cross Entropy)函数。在二分类中,label是{0,1}。对于进入交叉熵函数的input为概率分布的形式。一般来说,input为sigmoid激活层的输出,或者softmax的输出。
主要参数:
weight
:每个类别的loss设置权值
size_average
:数据为bool,为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。
reduce
:数据类型为bool,为True时,loss的返回是标量。
计算公式如下: $ \ell(x, y)=\left{\begin{array}{ll} \operatorname{mean}(L), & \text { if reduction }=\text { 'mean' } \ \operatorname{sum}(L), & \text { if reduction }=\text { 'sum' } \end{array}\right. $
m = nn.Sigmoid()
loss = nn.BCELoss()
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
output = loss(m(input), target)
output.backward()
print('BCELoss损失函数的计算结果为',output)
BCELoss损失函数的计算结果为 tensor(0.5732, grad_fn=<BinaryCrossEntropyBackward>)
3.5.2 交叉熵损失函数⚓︎
torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')
功能:计算交叉熵函数
主要参数:
weight
:每个类别的loss设置权值。
size_average
:数据为bool,为True时,返回的loss为平均值;为False时,返回的各样本的loss之和。
ignore_index
:忽略某个类的损失函数。
reduce
:数据类型为bool,为True时,loss的返回是标量。
计算公式如下: $ \operatorname{loss}(x, \text { class })=-\log \left(\frac{\exp (x[\text { class }])}{\sum_{j} \exp (x[j])}\right)=-x[\text { class }]+\log \left(\sum_{j} \exp (x[j])\right) $
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()
print(output)
tensor(2.0115, grad_fn=<NllLossBackward>)
3.5.3 L1损失函数⚓︎
torch.nn.L1Loss(size_average=None, reduce=None, reduction='mean')
功能: 计算输出y
和真实标签target
之间的差值的绝对值。
我们需要知道的是,reduction
参数决定了计算模式。有三种计算模式可选:none:逐个元素计算。
sum:所有元素求和,返回标量。
mean:加权平均,返回标量。
如果选择none
,那么返回的结果是和输入元素相同尺寸的。默认计算方式是求平均。
计算公式如下: $ L_{n} = |x_{n}-y_{n}| $
loss = nn.L1Loss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()
print('L1损失函数的计算结果为',output)
L1损失函数的计算结果为 tensor(1.5729, grad_fn=<L1LossBackward>)
3.5.4 MSE损失函数⚓︎
torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')
y
和真实标签target
之差的平方。
和L1Loss
一样,MSELoss
损失函数中,reduction
参数决定了计算模式。有三种计算模式可选:none:逐个元素计算。
sum:所有元素求和,返回标量。默认计算方式是求平均。
计算公式如下:
$ l_{n}=\left(x_{n}-y_{n}\right)^{2} $
loss = nn.MSELoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()
print('MSE损失函数的计算结果为',output)
MSE损失函数的计算结果为 tensor(1.6968, grad_fn=<MseLossBackward>)
3.5.5 平滑L1 (Smooth L1)损失函数⚓︎
torch.nn.SmoothL1Loss(size_average=None, reduce=None, reduction='mean', beta=1.0)
reduction
参数决定了计算模式。有三种计算模式可选:none:逐个元素计算。
sum:所有元素求和,返回标量。默认计算方式是求平均。
提醒: 之后的损失函数中,关于reduction
这个参数依旧会存在。所以,之后就不再单独说明。
计算公式如下: $ \operatorname{loss}(x, y)=\frac{1}{n} \sum_{i=1}^{n} z_{i} $ 其中, $ z_{i}=\left{\begin{array}{ll} 0.5\left(x_{i}-y_{i}\right)^{2}, & \text { if }\left|x_{i}-y_{i}\right|<1 \ \left|x_{i}-y_{i}\right|-0.5, & \text { otherwise } \end{array}\right. $
loss = nn.SmoothL1Loss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()
print('SmoothL1Loss损失函数的计算结果为',output)
SmoothL1Loss损失函数的计算结果为 tensor(0.7808, grad_fn=<SmoothL1LossBackward>)
平滑L1与L1的对比
这里我们通过可视化两种损失函数曲线来对比平滑L1和L1两种损失函数的区别。
inputs = torch.linspace(-10, 10, steps=5000)
target = torch.zeros_like(inputs)
loss_f_smooth = nn.SmoothL1Loss(reduction='none')
loss_smooth = loss_f_smooth(inputs, target)
loss_f_l1 = nn.L1Loss(reduction='none')
loss_l1 = loss_f_l1(inputs,target)
plt.plot(inputs.numpy(), loss_smooth.numpy(), label='Smooth L1 Loss')
plt.plot(inputs.numpy(), loss_l1, label='L1 loss')
plt.xlabel('x_i - y_i')
plt.ylabel('loss value')
plt.legend()
plt.grid()
plt.show()
可以看出,对于smoothL1
来说,在 0 这个尖端处,过渡更为平滑。
3.5.6 目标泊松分布的负对数似然损失⚓︎
torch.nn.PoissonNLLLoss(log_input=True, full=False, size_average=None, eps=1e-08, reduce=None, reduction='mean')
主要参数:
log_input
:输入是否为对数形式,决定计算公式。
full
:计算所有 loss,默认为 False。
eps
:修正项,避免 input 为 0 时,log(input) 为 nan 的情况。
数学公式:
-
当参数
log_input=True
: $ \operatorname{loss}\left(x_{n}, y_{n}\right)=e^{x_{n}}-x_{n} \cdot y_{n} $ -
当参数
log_input=False
:$ \operatorname{loss}\left(x_{n}, y_{n}\right)=x_{n}-y_{n} \cdot \log \left(x_{n}+\text { eps }\right) $
loss = nn.PoissonNLLLoss()
log_input = torch.randn(5, 2, requires_grad=True)
target = torch.randn(5, 2)
output = loss(log_input, target)
output.backward()
print('PoissonNLLLoss损失函数的计算结果为',output)
PoissonNLLLoss损失函数的计算结果为 tensor(0.7358, grad_fn=<MeanBackward0>)
3.5.7 KL散度⚓︎
torch.nn.KLDivLoss(size_average=None, reduce=None, reduction='mean', log_target=False)
主要参数:
reduction
:计算模式,可为 none
/sum
/mean
/batchmean
。
none:逐个元素计算。
sum:所有元素求和,返回标量。
mean:加权平均,返回标量。
batchmean:batchsize 维度求平均值。
计算公式:
$ \begin{aligned} D_{\mathrm{KL}}(P, Q)=\mathrm{E}{X \sim P}\left[\log \frac{P(X)}{Q(X)}\right] &=\mathrm{E}{X \sim P}[\log P(X)-\log Q(X)] \ &=\sum_{i=1}^{n} P\left(x_{i}\right)\left(\log P\left(x_{i}\right)-\log Q\left(x_{i}\right)\right) \end{aligned} $
inputs = torch.tensor([[0.5, 0.3, 0.2], [0.2, 0.3, 0.5]])
target = torch.tensor([[0.9, 0.05, 0.05], [0.1, 0.7, 0.2]], dtype=torch.float)
loss = nn.KLDivLoss()
output = loss(inputs,target)
print('KLDivLoss损失函数的计算结果为',output)
KLDivLoss损失函数的计算结果为 tensor(-0.3335)
3.5.8 MarginRankingLoss⚓︎
torch.nn.MarginRankingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean')
主要参数:
margin
:边界值,\(x_{1}\) 与\(x_{2}\) 之间的差异值。
reduction
:计算模式,可为 none/sum/mean。
计算公式:
$ \operatorname{loss}(x 1, x 2, y)=\max (0,-y *(x 1-x 2)+\operatorname{margin}) $
loss = nn.MarginRankingLoss()
input1 = torch.randn(3, requires_grad=True)
input2 = torch.randn(3, requires_grad=True)
target = torch.randn(3).sign()
output = loss(input1, input2, target)
output.backward()
print('MarginRankingLoss损失函数的计算结果为',output)
MarginRankingLoss损失函数的计算结果为 tensor(0.7740, grad_fn=<MeanBackward0>)
3.5.9 多标签边界损失函数⚓︎
torch.nn.MultiLabelMarginLoss(size_average=None, reduce=None, reduction='mean')
功能: 对于多标签分类问题计算损失函数。
主要参数:
reduction
:计算模式,可为 none/sum/mean。
计算公式: $ \operatorname{loss}(x, y)=\sum_{i j} \frac{\max (0,1-x[y[j]]-x[i])}{x \cdot \operatorname{size}(0)} $
$ \begin{array}{l} \text { 其中, } i=0, \ldots, x \cdot \operatorname{size}(0), j=0, \ldots, y \cdot \operatorname{size}(0), \text { 对于所有的 } i \text { 和 } j \text {, 都有 } y[j] \geq 0 \text { 并且 }\ i \neq y[j] \end{array} $
loss = nn.MultiLabelMarginLoss()
x = torch.FloatTensor([[0.9, 0.2, 0.4, 0.8]])
# for target y, only consider labels 3 and 0, not after label -1
y = torch.LongTensor([[3, 0, -1, 1]])# 真实的分类是,第3类和第0类
output = loss(x, y)
print('MultiLabelMarginLoss损失函数的计算结果为',output)
MultiLabelMarginLoss损失函数的计算结果为 tensor(0.4500)
3.5.10 二分类损失函数⚓︎
torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='mean')torch.nn.(size_average=None, reduce=None, reduction='mean')
主要参数:
reduction
:计算模式,可为 none/sum/mean。
计算公式:
$ \operatorname{loss}(x, y)=\sum_{i} \frac{\log (1+\exp (-y[i] \cdot x[i]))}{x \cdot \operatorname{nelement}()} $
$ \ \text { 其中, } x . \text { nelement() 为输入 } x \text { 中的样本个数。注意这里 } y \text { 也有 } 1 \text { 和 }-1 \text { 两种模式。 } \ $
inputs = torch.tensor([[0.3, 0.7], [0.5, 0.5]]) # 两个样本,两个神经元
target = torch.tensor([[-1, 1], [1, -1]], dtype=torch.float) # 该 loss 为逐个神经元计算,需要为每个神经元单独设置标签
loss_f = nn.SoftMarginLoss()
output = loss_f(inputs, target)
print('SoftMarginLoss损失函数的计算结果为',output)
SoftMarginLoss损失函数的计算结果为 tensor(0.6764)
3.5.11 多分类的折页损失⚓︎
torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None, size_average=None, reduce=None, reduction='mean')
主要参数:
reduction
:计算模式,可为 none/sum/mean。
p:
可选 1 或 2。
weight
:各类别的 loss 设置权值。
margin
:边界值
计算公式:
$ \operatorname{loss}(x, y)=\frac{\sum_{i} \max (0, \operatorname{margin}-x[y]+x[i])^{p}}{x \cdot \operatorname{size}(0)} $
$ \begin{array}{l} \text { 其中, } x \in{0, \ldots, x \cdot \operatorname{size}(0)-1}, y \in{0, \ldots, y \cdot \operatorname{size}(0)-1} \text {, 并且对于所有的 } i \text { 和 } j \text {, }\ \text { 都有 } 0 \leq y[j] \leq x \cdot \operatorname{size}(0)-1, \text { 以及 } i \neq y[j] \text { 。 } \end{array} $
inputs = torch.tensor([[0.3, 0.7], [0.5, 0.5]])
target = torch.tensor([0, 1], dtype=torch.long)
loss_f = nn.MultiMarginLoss()
output = loss_f(inputs, target)
print('MultiMarginLoss损失函数的计算结果为',output)
MultiMarginLoss损失函数的计算结果为 tensor(0.6000)
3.5.12 三元组损失⚓︎
torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, size_average=None, reduce=None, reduction='mean')
三元组: 这是一种数据的存储或者使用格式。<实体1,关系,实体2>。在项目中,也可以表示为< anchor
, positive examples
, negative examples
>
在这个损失函数中,我们希望去anchor
的距离更接近positive examples
,而远离negative examples
主要参数:
reduction
:计算模式,可为 none/sum/mean。
p:
可选 1 或 2。
margin
:边界值
计算公式:
$ L(a, p, n)=\max \left{d\left(a_{i}, p_{i}\right)-d\left(a_{i}, n_{i}\right)+\operatorname{margin}, 0\right} $
$ \text { 其中, } d\left(x_{i}, y_{i}\right)=\left|\mathbf{x}{i}-\mathbf{y}{i}\right|_{\text {・ }} $
triplet_loss = nn.TripletMarginLoss(margin=1.0, p=2)
anchor = torch.randn(100, 128, requires_grad=True)
positive = torch.randn(100, 128, requires_grad=True)
negative = torch.randn(100, 128, requires_grad=True)
output = triplet_loss(anchor, positive, negative)
output.backward()
print('TripletMarginLoss损失函数的计算结果为',output)
TripletMarginLoss损失函数的计算结果为 tensor(1.1667, grad_fn=<MeanBackward0>)
3.5.13 HingEmbeddingLoss⚓︎
torch.nn.HingeEmbeddingLoss(margin=1.0, size_average=None, reduce=None, reduction='mean')
主要参数:
reduction
:计算模式,可为 none/sum/mean。
margin
:边界值
计算公式:
$ l_{n}=\left{\begin{array}{ll} x_{n}, & \text { if } y_{n}=1 \ \max \left{0, \Delta-x_{n}\right}, & \text { if } y_{n}=-1 \end{array}\right. $ 注意事项: 输入x应为两个输入之差的绝对值。
可以这样理解,让个输出的是正例yn=1,那么loss就是x,如果输出的是负例y=-1,那么输出的loss就是要做一个比较。
loss_f = nn.HingeEmbeddingLoss()
inputs = torch.tensor([[1., 0.8, 0.5]])
target = torch.tensor([[1, 1, -1]])
output = loss_f(inputs,target)
print('HingEmbeddingLoss损失函数的计算结果为',output)
HingEmbeddingLoss损失函数的计算结果为 tensor(0.7667)
3.5.14 余弦相似度⚓︎
torch.nn.CosineEmbeddingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean')
主要参数:
reduction
:计算模式,可为 none/sum/mean。
margin
:可取值[-1,1] ,推荐为[0,0.5] 。
计算公式:
$ \operatorname{loss}(x, y)=\left{\begin{array}{ll} 1-\cos \left(x_{1}, x_{2}\right), & \text { if } y=1 \ \max \left{0, \cos \left(x_{1}, x_{2}\right)-\text { margin }\right}, & \text { if } y=-1 \end{array}\right. $ 其中, $ \cos (\theta)=\frac{A \cdot B}{|A||B|}=\frac{\sum_{i=1}^{n} A_{i} \times B_{i}}{\sqrt{\sum_{i=1}^{n}\left(A_{i}\right)^{2}} \times \sqrt{\sum_{i=1}^{n}\left(B_{i}\right)^{2}}} $
这个损失函数应该是最广为人知的。对于两个向量,做余弦相似度。将余弦相似度作为一个距离的计算方式,如果两个向量的距离近,则损失函数值小,反之亦然。
loss_f = nn.CosineEmbeddingLoss()
inputs_1 = torch.tensor([[0.3, 0.5, 0.7], [0.3, 0.5, 0.7]])
inputs_2 = torch.tensor([[0.1, 0.3, 0.5], [0.1, 0.3, 0.5]])
target = torch.tensor([1, -1], dtype=torch.float)
output = loss_f(inputs_1,inputs_2,target)
print('CosineEmbeddingLoss损失函数的计算结果为',output)
CosineEmbeddingLoss损失函数的计算结果为 tensor(0.5000)
3.5.15 CTC损失函数⚓︎
torch.nn.CTCLoss(blank=0, reduction='mean', zero_infinity=False)
计算连续时间序列和目标序列之间的损失。CTCLoss对输入和目标的可能排列的概率进行求和,产生一个损失值,这个损失值对每个输入节点来说是可分的。输入与目标的对齐方式被假定为 "多对一",这就限制了目标序列的长度,使其必须是≤输入长度。
主要参数:
reduction
:计算模式,可为 none/sum/mean。
blank
:blank label。
zero_infinity
:无穷大的值或梯度值为
# Target are to be padded
T = 50 # Input sequence length
C = 20 # Number of classes (including blank)
N = 16 # Batch size
S = 30 # Target sequence length of longest target in batch (padding length)
S_min = 10 # Minimum target length, for demonstration purposes
# Initialize random batch of input vectors, for *size = (T,N,C)
input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
# Initialize random batch of targets (0 = blank, 1:C = classes)
target = torch.randint(low=1, high=C, size=(N, S), dtype=torch.long)
input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
target_lengths = torch.randint(low=S_min, high=S, size=(N,), dtype=torch.long)
ctc_loss = nn.CTCLoss()
loss = ctc_loss(input, target, input_lengths, target_lengths)
loss.backward()
# Target are to be un-padded
T = 50 # Input sequence length
C = 20 # Number of classes (including blank)
N = 16 # Batch size
# Initialize random batch of input vectors, for *size = (T,N,C)
input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
# Initialize random batch of targets (0 = blank, 1:C = classes)
target_lengths = torch.randint(low=1, high=T, size=(N,), dtype=torch.long)
target = torch.randint(low=1, high=C, size=(sum(target_lengths),), dtype=torch.long)
ctc_loss = nn.CTCLoss()
loss = ctc_loss(input, target, input_lengths, target_lengths)
loss.backward()
print('CTCLoss损失函数的计算结果为',loss)
CTCLoss损失函数的计算结果为 tensor(16.0885, grad_fn=<MeanBackward0>)
创建日期: November 30, 2023