6.3 模型微调-torchvision⚓︎
随着深度学习的发展,模型的参数越来越大,许多开源模型都是在较大数据集上进行训练的,比如Imagenet-1k,Imagenet-11k,甚至是ImageNet-21k等。但在实际应用中,我们的数据集可能只有几千张,这时从头开始训练具有几千万参数的大型神经网络是不现实的,因为越大的模型对数据量的要求越大,过拟合无法避免。
假设我们想从图像中识别出不同种类的椅⼦,然后将购买链接推荐给用户。一种可能的方法是先找出100种常见的椅子,为每种椅子拍摄1000张不同⻆度的图像,然后在收集到的图像数据集上训练一个分类模型。这个椅子数据集虽然可能比Fashion-MNIST数据集要庞⼤,但样本数仍然不及ImageNet数据集中样本数的十分之⼀。这可能会导致适用于ImageNet数据集的复杂模型在这个椅⼦数据集上过拟合。同时,因为数据量有限,最终训练得到的模型的精度也可能达不到实用的要求。
为了应对上述问题,一个显⽽易⻅的解决办法是收集更多的数据。然而,收集和标注数据会花费大量的时间和资⾦。例如,为了收集ImageNet数据集,研究人员花费了数百万美元的研究经费。虽然目前的数据采集成本已降低了不少,但其成本仍然不可忽略。
另外一种解决办法是应用迁移学习(transfer learning),将从源数据集学到的知识迁移到目标数据集上。例如,虽然ImageNet数据集的图像大多跟椅子无关,但在该数据集上训练的模型可以抽取较通用的图像特征,从而能够帮助识别边缘、纹理、形状和物体组成等。这些类似的特征对于识别椅子也可能同样有效。
迁移学习的一大应用场景是模型微调(finetune)。简单来说,就是我们先找到一个同类的别人训练好的模型,把别人现成的训练好了的模型拿过来,换成自己的数据,通过训练调整一下参数。 在PyTorch中提供了许多预训练好的网络模型(VGG,ResNet系列,mobilenet系列......),这些模型都是PyTorch官方在相应的大型数据集训练好的。学习如何进行模型微调,可以方便我们快速使用预训练模型完成自己的任务。
经过本节的学习,你将收获:
- 掌握模型微调的流程
- 了解PyTorch提供的常用model
- 掌握如何指定训练模型的部分层
6.3.1 模型微调的流程⚓︎
- 在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
- 创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
- 为目标模型添加一个输出⼤小为⽬标数据集类别个数的输出层,并随机初始化该层的模型参数。
- 在目标数据集上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。
6.3.2 使用已有模型结构⚓︎
这里我们以torchvision中的常见模型为例,列出了如何在图像分类任务中使用PyTorch提供的常见模型结构和参数。对于其他任务和网络结构,使用方式是类似的:
- 实例化网络
``python
import torchvision.models as models
resnet18 = models.resnet18()
# resnet18 = models.resnet18(pretrained=False) 等价于与上面的表达式
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
densenet = models.densenet161()
inception = models.inception_v3()
googlenet = models.googlenet()
shufflenet = models.shufflenet_v2_x1_0()
mobilenet_v2 = models.mobilenet_v2()
mobilenet_v3_large = models.mobilenet_v3_large()
mobilenet_v3_small = models.mobilenet_v3_small()
resnext50_32x4d = models.resnext50_32x4d()
wide_resnet50_2 = models.wide_resnet50_2()
mnasnet = models.mnasnet1_0()
- 传递
pretrained`参数
通过True
或者False
来决定是否使用预训练好的权重,在默认状态下pretrained = False
,意味着我们不使用预训练得到的权重,当pretrained = True
,意味着我们将使用在一些数据集上预训练得到的权重。
python
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet_v2 = models.mobilenet_v2(pretrained=True)
mobilenet_v3_large = models.mobilenet_v3_large(pretrained=True)
mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)
注意事项:
-
通常PyTorch模型的扩展为
.pt
或.pth
,程序运行时会首先检查默认路径中是否有已经下载的模型权重,一旦权重被下载,下次加载就不需要下载了。 -
一般情况下预训练模型的下载会比较慢,我们可以直接通过迅雷或者其他方式去 这里 查看自己的模型里面
model_urls
,然后手动下载,预训练模型的权重在Linux
和Mac
的默认下载路径是用户根目录下的.cache
文件夹。在Windows
下就是C:\Users\<username>\.cache\torch\hub\checkpoint
。我们可以通过使用torch.utils.model_zoo.load_url()
设置权重的下载地址。 -
如果觉得麻烦,还可以将自己的权重下载下来放到同文件夹下,然后再将参数加载网络。
self.model = models.resnet50(pretrained=False)
self.model.load_state_dict(torch.load('./model/resnet50-19c8e357.pth'))
- 如果中途强行停止下载的话,一定要去对应路径下将权重文件删除干净,要不然可能会报错。
6.3.3 训练特定层⚓︎
在默认情况下,参数的属性.requires_grad = True
,如果我们从头开始训练或微调不需要注意这里。但如果我们正在提取特征并且只想为新初始化的层计算梯度,其他参数不进行改变。那我们就需要通过设置requires_grad = False
来冻结部分层。在PyTorch官方中提供了这样一个例程。
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
在下面我们仍旧使用resnet18
为例的将1000类改为4类,但是仅改变最后一层的模型参数,不改变特征提取的模型参数;注意我们先冻结模型参数的梯度,再对模型输出部分的全连接层进行修改,这样修改后的全连接层的参数就是可计算梯度的。
import torchvision.models as models
# 冻结参数的梯度
feature_extract = True
model = models.resnet18(pretrained=True)
set_parameter_requires_grad(model, feature_extract)
# 修改模型
num_ftrs = model.fc.in_features
model.fc = nn.Linear(in_features=num_ftrs, out_features=4, bias=True)
之后在训练过程中,model仍会进行梯度回传,但是参数更新则只会发生在fc层。通过设定参数的requires_grad属性,我们完成了指定训练模型的特定层的目标,这对实现模型微调非常重要。
本节参考⚓︎
创建日期: November 30, 2023