Index
简介⚓︎
MMYOLO 是一个基于 PyTorch 和 MMDetection 的 YOLO 系列算法开源工具箱。它是 OpenMMLab 项目的一部分。
主分支代码目前支持 PyTorch 1.6 以上的版本。
主要特性
- **统一便捷的算法评测** MMYOLO 统一了各类 YOLO 算法模块的实现, 并提供了统一的评测流程,用户可以公平便捷地进行对比分析。 - **丰富的入门和进阶文档** MMYOLO 提供了从入门到部署到进阶和算法解析等一系列文档,方便不同用户快速上手和扩展。 - **模块化设计** MMYOLO 将框架解耦成不同的模块组件,通过组合不同的模块和训练测试策略,用户可以便捷地构建自定义模型。 图为 RangeKing@GitHub 提供,非常感谢!教程⚓︎
MMYOLO 基于 MMDetection 开源库,并且采用相同的代码组织和设计方式。为了更好的使用本开源库,请先阅读 MMDetection 概述 对 MMDetection 进行初步地了解。
MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也可以了解 MMDetection 用户指南和进阶指南 。
针对和 MMDetection 不同的部分,我们也准备了用户指南和进阶指南,请阅读我们的 文档 。
-
算法解读
-
用户指南
- 从入门到部署全流程
-
算法部署
-
进阶指南
基准测试和模型库⚓︎
测试结果和模型可以在 模型库 中找到。
支持的算法
- [x] [YOLOv5](configs/yolov5) - [x] [YOLOX](configs/yolox) - [x] [RTMDet](configs/rtmdet) - [x] [YOLOv6](configs/yolov6) - [ ] [PPYOLOE](configs/ppyoloe)(仅推理) - [ ] [YOLOv7](configs/yolov7)(仅推理)Backbones | Necks | Loss | Common |
|
|
|
|
常见问题⚓︎
请参考 FAQ 了解其他用户的常见问题。
贡献指南⚓︎
我们感谢所有的贡献者为改进和提升 MMYOLO 所作出的努力。我们将正在进行中的项目添加进了GitHub Projects页面,非常欢迎社区用户能参与进这些项目中来。请参考贡献指南来了解参与项目贡献的相关指引。
致谢⚓︎
MMYOLO 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献。
引用⚓︎
如果你觉得本项目对你的研究工作有所帮助,请参考如下 bibtex 引用 MMYOLO
@misc{mmyolo2022,
title={{MMYOLO: OpenMMLab YOLO} series toolbox and benchmark},
author={MMYOLO Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmyolo}},
year={2022}
}
开源许可证⚓︎
该项目采用 GPL 3.0 开源许可证。
OpenMMLab 的其他项目⚓︎
- MMEngine: OpenMMLab 深度学习模型训练基础库
- MMCV: OpenMMLab 计算机视觉基础库
- MIM: MIM 是 OpenMMlab 项目、算法、模型的统一入口
- MMClassification: OpenMMLab 图像分类工具箱
- MMDetection: OpenMMLab 目标检测工具箱
- MMDetection3D: OpenMMLab 新一代通用 3D 目标检测平台
- MMRotate: OpenMMLab 旋转框检测工具箱与测试基准
- MMYOLO: OpenMMLab YOLO 系列工具箱
- MMSegmentation: OpenMMLab 语义分割工具箱
- MMOCR: OpenMMLab 全流程文字检测识别理解工具包
- MMPose: OpenMMLab 姿态估计工具箱
- MMHuman3D: OpenMMLab 人体参数化模型工具箱与测试基准
- MMSelfSup: OpenMMLab 自监督学习工具箱与测试基准
- MMRazor: OpenMMLab 模型压缩工具箱与测试基准
- MMFewShot: OpenMMLab 少样本学习工具箱与测试基准
- MMAction2: OpenMMLab 新一代视频理解工具箱
- MMTracking: OpenMMLab 一体化视频目标感知平台
- MMFlow: OpenMMLab 光流估计工具箱与测试基准
- MMEditing: OpenMMLab 图像视频编辑工具箱
- MMGeneration: OpenMMLab 图片视频生成模型工具箱
- MMDeploy: OpenMMLab 模型部署框架
- MMEval: OpenMMLab 机器学习算法评测库
欢迎加入 OpenMMLab 社区⚓︎
扫描下方的二维码可关注 OpenMMLab 团队的 知乎官方账号,加入 OpenMMLab 团队的 官方交流 QQ 群
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬
创建日期: November 30, 2023