跳转至

使用Trainer API进行超参数搜索⚓︎

🤗 Transformers库提供了一个优化过的[Trainer]类,用于训练🤗 Transformers模型,相比于手动编写自己的训练循环,这更容易开始训练。[Trainer]提供了超参数搜索的API。本文档展示了如何在示例中启用它。

超参数搜索后端⚓︎

[Trainer] 目前支持四种超参数搜索后端:optunasigoptraytunewandb

在使用它们之前,您应该先安装它们作为超参数搜索后端。

pip install optuna/sigopt/wandb/ray[tune] 

如何在示例中启用超参数搜索⚓︎

定义超参数搜索空间,不同的后端需要不同的格式。

对于sigopt,请参阅sigopt object_parameter,它类似于以下内容:

>>> def sigopt_hp_space(trial):
...     return [
...         {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
...         {
...             "categorical_values": ["16", "32", "64", "128"],
...             "name": "per_device_train_batch_size",
...             "type": "categorical",
...         },
...     ]

对于optuna,请参阅optuna object_parameter,它类似于以下内容:

>>> def optuna_hp_space(trial):
...     return {
...         "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
...         "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
...     }

Optuna提供了多目标HPO。您可以在hyperparameter_search中传递direction参数,并定义自己的compute_objective以返回多个目标值。在hyperparameter_search中将返回Pareto Front(List[BestRun]),您应该参考test_trainer中的测试用例TrainerHyperParameterMultiObjectOptunaIntegrationTest。它类似于以下内容:

>>> best_trials = trainer.hyperparameter_search(
...     direction=["minimize", "maximize"],
...     backend="optuna",
...     hp_space=optuna_hp_space,
...     n_trials=20,
...     compute_objective=compute_objective,
... )

对于raytune,可以参考raytune的object_parameter,它类似于以下内容:

>>> def ray_hp_space(trial):
...     return {
...         "learning_rate": tune.loguniform(1e-6, 1e-4),
...         "per_device_train_batch_size": tune.choice([16, 32, 64, 128]),
...     }

对于wandb,可以参考wandb的object_parameter,它类似于以下内容:

>>> def wandb_hp_space(trial):
...     return {
...         "method": "random",
...         "metric": {"name": "objective", "goal": "minimize"},
...         "parameters": {
...             "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
...             "per_device_train_batch_size": {"values": [16, 32, 64, 128]},
...         },
...     }

定义一个model_init函数并将其传递给[Trainer],作为示例:

>>> def model_init(trial):
...     return AutoModelForSequenceClassification.from_pretrained(
...         model_args.model_name_or_path,
...         from_tf=bool(".ckpt" in model_args.model_name_or_path),
...         config=config,
...         cache_dir=model_args.cache_dir,
...         revision=model_args.model_revision,
...         use_auth_token=True if model_args.use_auth_token else None,
...     )

使用你的model_init函数、训练参数、训练和测试数据集以及评估函数创建一个[Trainer]。

>>> trainer = Trainer(
...     model=None,
...     args=training_args,
...     train_dataset=small_train_dataset,
...     eval_dataset=small_eval_dataset,
...     compute_metrics=compute_metrics,
...     tokenizer=tokenizer,
...     model_init=model_init,
...     data_collator=data_collator,
... )

调用超参数搜索,获取最佳试验参数,后端可以是"optuna"/"sigopt"/"wandb"/"ray"。方向可以是"minimize""maximize",表示是否优化更大或更低的目标。

您可以定义自己的compute_objective函数,如果没有定义,将调用默认的compute_objective,并将评估指标(如f1)之和作为目标值返回。

>>> best_trial = trainer.hyperparameter_search(
...     direction="maximize",
...     backend="optuna",
...     hp_space=optuna_hp_space,
...     n_trials=20,
...     compute_objective=compute_objective,
... )

针对DDP微调的超参数搜索⚓︎

目前,Optuna和Sigopt已启用针对DDP的超参数搜索。只有rank-zero进程会进行超参数搜索并将参数传递给其他进程。


最后更新: November 25, 2023
创建日期: November 25, 2023