模型⚓︎
基类 [PreTrainedModel
]、[TFPreTrainedModel
] 和 [FlaxPreTrainedModel
] 实现了从本地文件或目录加载/保存模型的常用方法,或者从库上提供的预训练模型配置(从 HuggingFace 的 AWS S3 存储库下载)加载模型。
[PreTrainedModel
] 和 [TFPreTrainedModel
] 还实现了一些所有模型共有的方法:
- 在向量词嵌入增加新词汇时调整输入标记(token)的大小
- 对模型的注意力头进行修剪。
其他的通用方法在 [~modeling_utils.ModuleUtilsMixin
](用于 PyTorch 模型)和 [~modeling_tf_utils.TFModuleUtilsMixin
](用于 TensorFlow 模型)中定义;文本生成方面的方法则定义在 [~generation.GenerationMixin
](用于 PyTorch 模型)、[~generation.TFGenerationMixin
](用于 TensorFlow 模型)和 [~generation.FlaxGenerationMixin
](用于 Flax/JAX 模型)中。
PreTrainedModel⚓︎
[[autodoc]] PreTrainedModel - push_to_hub - all
大模型加载⚓︎
在 Transformers 4.20.0 中,[~PreTrainedModel.from_pretrained
] 方法已重新设计,以适应使用 Accelerate 加载大型模型的场景。这需要您使用的 Accelerate 和 PyTorch 版本满足: Accelerate >= 0.9.0, PyTorch >= 1.9.0。除了创建完整模型,然后在其中加载预训练权重(这会占用两倍于模型大小的内存空间,一个用于随机初始化模型,一个用于预训练权重),我们提供了一种选项,将模型创建为空壳,然后只有在加载预训练权重时才实例化其参数。
您可以使用 low_cpu_mem_usage=True
激活此选项。首先,在 Meta 设备上创建模型(带有空权重),然后将状态字典加载到其中(在分片检查点的情况下逐片加载)。这样,最大使用的内存占用仅为模型的完整大小。
from transformers import AutoModelForSeq2SeqLM
t0pp = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", low_cpu_mem_usage=True)
此外,如果内存不足以放下加载整个模型(目前仅适用于推理),您可以直接将模型放置在不同的设备上。使用 device_map="auto"
,Accelerate 将确定将每一层放置在哪个设备上,以最大化使用最快的设备(GPU),并将其余部分卸载到 CPU,甚至硬盘上(如果您没有足够的 GPU 内存 或 CPU 内存)。即使模型分布在几个设备上,它也将像您通常期望的那样运行。
在传递 device_map
时,low_cpu_mem_usage
会自动设置为 True
,因此您不需要指定它:
from transformers import AutoModelForSeq2SeqLM
t0pp = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", device_map="auto")
您可以通过 hf_device_map
属性来查看模型是如何在设备上分割的:
t0pp.hf_device_map
{'shared': 0,
'decoder.embed_tokens': 0,
'encoder': 0,
'decoder.block.0': 0,
'decoder.block.1': 1,
'decoder.block.2': 1,
'decoder.block.3': 1,
'decoder.block.4': 1,
'decoder.block.5': 1,
'decoder.block.6': 1,
'decoder.block.7': 1,
'decoder.block.8': 1,
'decoder.block.9': 1,
'decoder.block.10': 1,
'decoder.block.11': 1,
'decoder.block.12': 1,
'decoder.block.13': 1,
'decoder.block.14': 1,
'decoder.block.15': 1,
'decoder.block.16': 1,
'decoder.block.17': 1,
'decoder.block.18': 1,
'decoder.block.19': 1,
'decoder.block.20': 1,
'decoder.block.21': 1,
'decoder.block.22': 'cpu',
'decoder.block.23': 'cpu',
'decoder.final_layer_norm': 'cpu',
'decoder.dropout': 'cpu',
'lm_head': 'cpu'}
您还可以按照相同的格式(一个层名称到设备的映射关系的字典)编写自己的设备映射规则。它应该将模型的所有参数映射到给定的设备上,如果该层的所有子模块都在同一设备上,您不必详细说明其中所有子模块的位置。例如,以下设备映射对于 T0pp 将正常工作(只要您有 GPU 内存):
device_map = {"shared": 0, "encoder": 0, "decoder": 1, "lm_head": 1}
另一种减少模型内存影响的方法是以较低精度的 dtype(例如 torch.float16
)实例化它,或者使用下面介绍的直接量化技术。
模型实例化 dtype⚓︎
在 PyTorch 下,模型通常以 torch.float32
格式实例化。如果尝试加载权重为 fp16 的模型,这可能会导致问题,因为它将需要两倍的内存。为了克服此限制,您可以使用 torch_dtype
参数显式传递所需的 dtype
:
model = T5ForConditionalGeneration.from_pretrained("t5", torch_dtype=torch.float16)
"auto"
,然后 dtype
将自动从模型的权重中推导出:
model = T5ForConditionalGeneration.from_pretrained("t5", torch_dtype="auto")
也可以通过以下方式告知从头开始实例化的模型要使用哪种 dtype
:
config = T5Config.from_pretrained("t5")
model = AutoModel.from_config(config)
由于 PyTorch 的设计,此功能仅适用于浮点类型。
ModuleUtilsMixin⚓︎
[[autodoc]] modeling_utils.ModuleUtilsMixin
TFPreTrainedModel [[autodoc]] TFPreTrainedModel - push_to_hub - all
TFModelUtilsMixin⚓︎
[[autodoc]] modeling_tf_utils.TFModelUtilsMixin
FlaxPreTrainedModel [[autodoc]] FlaxPreTrainedModel - push_to_hub - all
推送到 Hub⚓︎
[[autodoc]] utils.PushToHubMixin
分片检查点⚓︎
[[autodoc]] modeling_utils.load_sharded_checkpoint
创建日期: November 25, 2023